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1 Setup
Let X denote the stochastic process for log-prices. Let’s start with the continuous case:

Xt =
∫ t

0
as ds+

∫ t

0

√
cs dWs

As before, the first integral is the ordinary integral, the second is a stochastic integral.
Throughout, ct is the local variance of the process, which is a stochastic process itself
determined by the state of the economy. At high frequencies we can ignore the drift at,
which is essentially a tiny constant and not detectable with high frequency data.

For a small τ :

Xt+τ = Xt +
∫ t+τ

t

√
cs dWs

≈ Xt +
√∫ t+τ

t
csds Zt︸︷︷︸
d∼ N (0, 1)

In most of what follows, we treat the c process as given independently of the W process.
This assumption is only for simplicity and can be omitted in the advanced theory.

If c is constant then:

Xt+τ ≈ Xt +
√
τcZt

Many authors write σ ≡
√
c, so the above becomes:

Xt+τ ≈ Xt + τ 1/2σZt

Next, we replace τ with ∆n, which is the width of the sampling interval. Then, we
can write:

Xt+τ ≈ Xt +
√

∆ncZt

when the variance process is constant (cs = c).
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2 Sampling
Given the process for log-prices, we consider discrete and equi-spaced observations at sam-
pling intervals given by ∆n. That is, we assume we observeX at times: X0, X∆n , X2∆n , . . . , XnT∆n ,
where n = b1/∆nc.

The returns of this asset are given by:

∆n
iX ≡ Xi∆n −X(i−1)∆n for i = 1, 2, . . . , nT

Following Ole E. Barndorff-Nielsen and Neil Shephard, 2004 (and references therein)
we can define the realized variance and bipower variance via sums of |∆n

iX|
2 and |∆n

iX|
∣∣∣∆n

i−1X
∣∣∣.

3 The Realized Variance and Bipower Variance
The basic measure of variance in much of our work is the realized variance. Suppose for
the moment T = 1 (a day). Then:

RV ≡
n∑
i=1
|∆n

iX|
2

Below, we see why in the continuous case:

RV → IV where IV ≡
∫ 1

0
cs ds

The above only holds if X is continuous, in the case of jumps:

RV → IV +
∑
p

∣∣∣∆τpX
∣∣∣2

i.e., the integrated variance plus the sum of the jumps squared. (Where (τp)p≥1 index
the jump times.) A very important jump-robust measure of integrated variance is the
bipower variation

BV ≡ π

2

n∑
i=2
|∆n

iX|
∣∣∣∆n

i−1X
∣∣∣

It can be shown that even under the presence of jumps:

BV → IV

Let’s show the result for RV.

3.1 Law of Large Numbers (LLN) for RV in the Continuous
Case

The basic and familiar law of large numbers is

1
n

n∑
i=1

Yi → µy where µy ≡ E[Y ]
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under reasonable independence assumptions on the Yi. This same law of large numbers
implies that RV → IV in the continuous case.

To see why, note that

RV =
n∑
i=1
|∆n

iX|
2

A reasonable question is where is the 1/n term to make an average? The answer is that
it is already there from the sampling scheme. Suppose cs = c, a constant. Then

RV ≈
n∑
i=1

∣∣∣∣√∆ncZi

∣∣∣∣2
= ∆nc

n∑
i=1
|Zi|2

= c
1
n

n∑
i=1
|Zi|2

By the law of large numbers 1
n

∑n
i=1 |Zi|

2 → E[Z2] = 1, so we get RV → c.
For the general case, the required law of large numbers is as follows. For random

variables Yn,i that are independent across i for each n, then

1
n

n∑
i=1

Yn,i → µ where µ = lim
n→∞

1
n

n∑
i=1

E[Yn,i]

If ct varies over the interval [0, 1], then RV can be expressed as

RV =
n∑
i=1

c̄ n,iZ
2
n,i

where
c̄n,i =

∫ ti

ti−1
cs ds, ti = i∆n.

The ith increment in X is
∆n
iX =

√
c̄n,iZn,i

Locally, cs is approximately a constant cn,i, on [(i−1)∆n, i∆n], so c̄n,i =
∫ ti
ti−1

cs ds = ∆ncn,i

RV =
n∑
i=1

∆ncn,iZ
2
n,i

or

RV = 1
n

n∑
i=1

cn,iZ
2
n,i

Setting Yn,i = cn,iZ
2
n,i, then

1
n

n∑
i=1

E[Yn,i] = ∆n

n∑
1
cn,i →

∫ 1

0
cs ds.

by ordinary (calculus) integration.
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3.2 The Central Limit Theorem
We only now know that RV → IV , but the result is only useful only if the convergence is
fast enough and we can make inferences, i.e., form confidence intervals. Across statistics
the best rate we generally achieve

√
n on n observations. We will see that the RV actually

achieves this rate.
The central limit theorem (CLT) problem is to determine the rate of convergence and

the limiting distribution, if available. Suppose t ∈ [0, 1]. The claim is that the rate is
∆−

1
2

n , i.e., n 1
2 and the asymptotic distribution as given below.

To see this, consider

∆−
1
2

n

(
n∑
i=1
|∆n

iX|
2 −

∫ 1

0
cs ds

)

Remember c̄n,i =
∫ ti
ti−1

cs ds, where ti = i∆n, and ∆n
iX = √c̄n,iZn,i. Thus we can write

the above as

∆−
1
2

n

n∑
i=1

c̄n,i
(
Z2
n,i − 1

)

3.2.1 The Case of Constant Local Variance

Suppose for the moment that cs = c, a randomly selected (by the economy) constant but
we condition on the realization. Then cn,i = c and c̄n,i = c∆n, and the previous equation
becomes:

∆−
1
2

n ∆n

(
n∑
i=1

cn,i
(
Z2
n,i − 1

))

or

c∆
1
2
n

n∑
i=1

(
Z2
n,i − 1

)
Equivalently it is

c√
n

n∑
i=1

(
Z2
n,i − 1

)
.

By the ordinary central limit theorem we have that the above d→ N(0, 2c2). The 2 comes
from Var [Z2] = 2.

3.2.2 The Case of Non-Constant Local Variance

If ct is not a constant then things are a little more delicate:

∆−
1
2

n

n∑
i=1

c̄ n,i
(
Z2
n,i − 1

)
=

n∑
i=1

∆−
1
2

n c̄ n,i
(
Z2
n,i − 1

)
The above will converge in distribution to a normal with asymptotic variance

2× lim
n→∞

n∑
i=1

(
∆−

1
2

n c̄ n,i

)2
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so long as the limit is positive and finite. Suppose ct is smooth enough that it acts
like a constant on [tn,i−1, tn,i]: cs ≈ cn,iI [tn,i−1 ≤ s ≤ tn,i]. Then c̄n,i ≈ cn,i∆n, and we
get:

2× lim
n→∞

n∑
i=1

(
∆−

1
2

n cn,i∆n

)2

Finally:

2× lim
n→∞

n∑
i=1

c2
n,i∆n → 2×

∫ 1

0
c2
s ds

by the regular definition of the integral. To summarize, we have:

∆−
1
2

n

n∑
i=1

cn,i
(
Z2
n,i − 1

)
d→ N

(
0, 2

∫ 1

0
c2
s ds

)

Common practice is to set σs = √cs so the limit is written as

N
(

0, 2
∫ 1

0
σ4
s ds

)
the now classic result. The result was initially developed and extended for econometrics
by O. Barndorff-Nielsen and N. Shephard, 2002a; O. Barndorff-Nielsen and N. Shep-
hard, 2002b; Ole E. Barndorff-Nielsen and Neil Shephard, 2002; Ole E. Barndorff-Nielsen
and Neil Shephard, 2004; O. Barndorff-Nielsen, N. Shephard, and M. Winkel, 2006; O.
Barndorff-Nielsen and N. Shephard, 2006; Ole E Barndorff-Nielsen, Neil Shephard, and
Matthias Winkel, 2006; O. Barndorff-Nielsen, Graversen, et al., 2005. It can be derived
using different methods based on Jacod and Protter, 1998 and presented in general form
in J. Jacod, 2008, Jean Jacod and Philip Protter, 2012, and Ait-Sahalia and Jean Jacod,
2014 .
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