
Econ890-04 Python Guilherme Salomé

Setting Up

To run Python programs all we need is a Python interpreter and a text editor. In the
next section you will learn how to install the reference Python interpreter. Then we will
discuss what IDEs are available for Python.

Installing Python
The reference Python implementation is CPython. We will use the 3.6.x version. The
Python 2 version is being discontinued and will soon not be supported anymore, so do
not even bother with it.

To install, go to this download page for Python 3.6.8. On the bottom of the page
you will find the links to the installer for different operating systems. If you are running
Windows or MacOS, select the appropriate installer (64-bit) and download it. Before
installing Python read the section bellow for your operating systems.

Windows
Run the installer, then:

• In the installation check the boxes: Install launcher for all users and Add
Python 3.6 to PATH

• Then click on Install Now

• Click on Disable path length limit

• Finish installing and close the installer
Open the Windows Power Shell. Notice that the power shell is not the same program

as the command prompt. The command prompt is usually a black screen, while the Power
Shell will open up a blue screen.

On the Power Shell type:
1 # Show where Python was installed
2 Get - Command py
3 # Verify that the version of Python is in fact 3.6.x
4 py --version # Should print 3.6.x

The last command should print the correct version of Python that was just installed. If it
does not, then you probably have already installed some other version of Python. If the
version is a recent one, 3.6.x or 3.7.x or higher, then it should be fine. If it is not, then
you will need to either uninstall the previous version and then reinstall Python 3.6.8, or
use a virtual environment (discussed in a section below).

You can now launch the Python interpreter by running:

Page 1

https://www.python.org/downloads/release/python-368/

Econ890-04 Python Summer 2019

1 py

This will launch Python and you can now type Python commands to have them evaluated
just in time.

Notice that Windows refers to Python as py, but all other operating systems use the
name python or python3. For this reason, moving on, we will refer to Python commands
that should be run on the Power Shell with python instead of py. But to make the
command work in Windows you should write py instead of python.

MacOS
Run the installer with all defaults. After installing, open Terminal and verify the instal-
lation:

1 # Show where Python was installed
2 which python
3 # Verify that the version of Python is in fact 3.6.x
4 python --version

MacOS usually comes with a Python 2.x preinstalled, so the command above might
return something like Python 2.7.10. However, you can still access the Python you just
installed with the command python3 or even python3.6. To verify this is the case, run
the following on Terminal:

1 python3 --version

And you should get back Python 3.6.8.
You can now launch the Python interpreter by running:

1 python3

This will launch Python and you can now type Python commands to have them evaluated
just in time.

Moving on, whenever you see a command for Terminal starting with python, please
make the substitution to python3.

GNU/Linux
To install Python on GNU/Linux, open Terminal and run:

1 # Update source list
2 sudo apt -get update
3 # Install Python 3.6
4 sudo apt -get install python3 .6
5 sudo apt -get install python3 -pip

Now, check if we got the correct version installed by typing the following:
1 python --version

On GNU/Linus you may already have a Python 2 installed, so Python 3.6 would be
available as python3 or even python3.6 instead. If the command above does not return
Python 3.6.x, then try the following:

Page 2

Econ890-04 Python Summer 2019

1 python3 --version
2 # or
3 python3 .6 --version

And you should see Python 3.6.
You can now launch the Python interpreter by running:

1 python3

This will launch Python and you can now type Python commands to have them evaluated
just in time.

Moving on, whenever you see a command for Terminal starting with python, please
make the appropriate substitution to python3 or python3.6.

Python Package Installer
Now, we need to install the Python Package Installer, also known as pip, which is re-
sponsible for downloading and installing additional packages that we might require. To
do so, run the following in the Terminal (or Power Shell):

1 python -m pip install -U pip

Remember to make the appropriate substitution of python so that you are using Python
3 and not Python 2.

The command above will install and upgrade pip to the latest version. You can now
use pip to install packages.

The packages installed using pip are fetched from a central repository called the
Python Package Index (PyPI, https://pypi.org). These packages are installed in a
folder named site-packages, and the packages are local to each version of Python
(more about this on the section about virtual environments).

Packages can be installed with the command pip install <package_name>, and
uninstalled with pip uninstall <package_name>. In some systems, it is not possible
to call pip directly, so you should run instead:

1 python -m pip install <package_name >

The command pip list lists all installed packages and their version numbers. The
command pip list --outdated shows installed packages that are outdated. Outdated
packages can be updated with pip install --upgrade <outdate_package_name>. The
command pip show <package_name> gives a detailed description of the installed pack-
age, including where it is installed, the version number and dependencies.

An important feature of pip is that it can install packages listed in a file automatically.
Why is this useful? Let’s say you are working on a research project, and end up installing
20 different packages. Then, you need to share your code with a co-author or you need
to run your code on a faster computer. Then you need to find out what were all of the 20
packages you installed and what were their versions, since using very different versions
of packages could break your code. Fortunately, pip makes this task easy:

1 pip freeze > requirements .txt

Page 3

https://pypi.org

Econ890-04 Python Summer 2019

The command above will create a text file containing a list of all the packages you have
installed and their versions. Each line will contain a single package and the version
number. You can send this file to your co-author or new computer and run:

1 pip install -r requirements .txt

The command will install all of the packages in the same versions you were originally
using.

Text Editors and Integrated Development Environ-
ments (IDEs)
To write Python programs we need to write commands in a text file ending in .py. Then
we tell Python to execute the commands in that file. In order to help us write those
files, it is useful to have a text editor that has syntax highlighting and auto completion
of certain terms.

Below is a short list of possible text editors that you can use:

• Editors/IDEs that are easy to setup and use:

– Any text editor, like TextEdit or Notepad. The caveat with these editors is
that there is no syntax highlighting or other utilities.

– IDLE: comes installed with Python. Provides a simple editor and Python
shell.

– Anaconda is a full IDE that comes with many packages preinstalled (it also
comes with Jupyter, mentioned in the list below). It is open source and free
to use. Most beginners to Python use this distribution. It provides an envi-
ronment similar to Matlab or R, with a text editor and a REPL. Installing
Anaconda will install Python in a virtual environment so that it is separate
from the Python in your system. More about virtual environments in the
sections below.

• Editors/IDEs that are medium difficulty to setup and use:

– Jupyter Notebook: it is a web application for creating documents that mix
text, images and code. It is open source and free to use. We will use this IDE
to code during most of the lectures.

– Visual Studio Code: an IDE by Microsoft. You can add support for Python
within the program. It is free to use and can be customized.

– Atom: an IDE created by people at Github. You can add support for Python
installing packages such as this. It can be customized with JavaScript.

– Sublime: paid text editor. Can be used for Python with plugin.

• Editors/IDEs that are hard to setup and use:

– GNU Emacs: a customizable text editor. Can be made into an IDE for Python
with packages such as Elpy.

Page 4

https://docs.python.org/3/library/idle.html
https://www.anaconda.com/distribution/
https://jupyter.org
https://code.visualstudio.com
https://atom.io
https://atom.io/packages/ide-python
https://www.sublimetext.com
https://www.gnu.org/software/emacs/
https://github.com/jorgenschaefer/elpy#elpy-the-emacs-lisp-python-environment

Econ890-04 Python Summer 2019

– Vim: a customizable text editor. Can be made into an IDE for Python by
following this tutorial.

If you write a lot of Python code, you should think about learning how to use Emacs or
Vim, since they are incredible text editors (but with a steep learning curve). Anaconda
is a very good IDE for beginners and comes with most of the packages we will use
preinstalled, including Jupyter. Jupyter Notebook is great for sharing code with others
during presentations (or discussions with faculty). During the lectures we will use Jupyter
Notebook as our Python IDE, but when you are coding by yourself you may want to use
something else. Feel free to use whatever editor you are most comfortable with.

Virtual Environments
So far we have installed Python 3.6.8 in our computer and also the package Jupyter
Notebook. You probably have run into the issue that another version of Python was
already installed on your system, most likely Python 2. And that to access the correct
version of Python we had to be careful and use python3 or python3.6. To avoid having
to deal with these issues we will create something called a virtual environment.

To understand what a virtual environment is, we need to understand how your com-
puter finds a program when you type python in the Terminal. When we tell the terminal
to run a program, it tries to find the program in a list of folders. This list of folders is
stored in a variable named PATH. You can see this list by typing the following in the
Terminal:

1 echo $PATH

In Power Shell:
1 $Env: Path

You will get a list like this:
1 /usr/local/bin :/ usr/bin :/ bin :/ usr/sbin :/ sbin

The folders are separated by colons, and the search for the program follows the order of
the folders in the list. In this case, if we type python, we will search for the program
python in the folder /usr/local/bin, since my Python 3.6.x is installed in that folder
it will be found and executed. This is why, in my computer when I type which python,
I get back Python 3.6. Now, if I did not have Python 3.6 installed, then there would
be no python in the folder /usr/local/bin and the search would fail. We would then
search for python in /usr/bin where we would find it. In my computer, the python
inside /usr/bin is the Python installed with the operating system (Python 2.7.10).

What would happen if we switched the order of folders in PATH to the following:
1 /usr/bin :/ usr/local/bin :/ bin :/ usr/sbin :/ sbin

And then typed:
1 which python # Get - Command py in Windows

What should be the result of the command above? It would print out Python 2.7.10,
since it would search for python now starting in the /usr/bin folder instead of /usr/local/bin.

Page 5

https://www.vim.org
https://realpython.com/vim-and-python-a-match-made-in-heaven/

Econ890-04 Python Summer 2019

Therefore, changing the order of folders in PATH changes where the system will search for
programs to run.

What a virtual environment does is temporarily modify the list of folders in PATH, so
that if we type python we get the Python version we expect to get, no matter where it
is.

Creating a Virtual Environment for Python
There are many ways to create a virtual environment, here we will use the package
virtualenv. This package creates an isolated Python environment in a folder. We can
activate this environment so that python points to the Python installed in that folder.
This also means that packages installed with pip will be installed for the Python in that
folder. This isolates Python in a way that is easy to replicate and control.

Install virtualenv with pip:
1 python3 -m pip install virtualenv

Next, we will call virtualenv with two arguments. The first argument is the path to
the folder where we want to create the virtual environment. The second argument is the
python version we want to install in that environment. Run the following:

1 virtualenv ~/ Desktop /py36 --python= python3 .6

If you are a Windows user and you get an error message about "Execution Policy", then
you should read the blue Note box in this page.

At this point virtualenv has created a folder py36. Its contents are:
1 py36/
2 |-- bin/ # contains python and pip binaries , and

activate script
3 |-- include / # C code used by Python
4 |-- lib/ # python packages : standard library and

downloads
5 |-- python3 .6/
6 |-- site - packages / # packages installed with pip go

here

If you are a Windows user, then you should see similar folders and a folder named
Scripts.

To actually make the virtual environment active, execute the following:
1 source ~/ Desktop /py36/bin/ activate

In Power Shell:
1 . ~\ Desktop \py36\ Scripts \ activate .ps1

This script will activate the virtual environment, making the necessary changes to the
PATH variable, so that typing python just works.

We can check that we are calling the right Python by running:
1 which python # returns ~/ Desktop /py36/bin/

python

Page 6

https://virtualenv.pypa.io/en/latest/userguide/

Econ890-04 Python Summer 2019

2 python --version # returns Python 3.6.8
3 echo $PATH # notice what is the first

folder in the list!

Now we can run our Python code, install packages and everything related to Python will
be contained in the py36 folder. We localized Python 3.6 and any packages we install
to the py36 folder. Because we are using the virtual environment, we do not need to
remember to make the appropriate substitution of python for python3 or python3.6
anymore.

After you are done working with Python 3.6 you can simply run deactivate to exit
the virtual environment (or just close the terminal).

Notice that your programs do not need to necessarily be on the py36 folder. That
folder simply contains Python and packages that we will use when the environment is
active. The IDE Anaconda creates a virtual environment with Python and other packages
under the hood, basically replicating the process we above.

Installing Jupyter Notebook
We will now install Jupyter Notebook, which is the web browser based IDE we are going
to use during the lectures. To do so, first activate the virtual environment so that we
install Jupyter for the right version of Python.

1 source ~/ Desktop /py36/bin/ activate

To install Jupyter Notebook we can use pip. Run the following in a Terminal (or Power
Shell for Windows users):

1 pip install jupyter

Now you have installed Jupyter Notebook. To run the notebook, simply type:
1 jupyter notebook

This will start the jupyter notebook server on your terminal and then launch a browser
with the Jupyter Notebook application. There you can create a new file and start coding.
To shutdown the notebook just go back to the Terminal and hit Ctrl-C twice.

Preparing For the Next Lectures
At the beginning of each lecture, the first thing you should do is activate the virtual
environment:

1 source ~/ Desktop /py36/bin/ activate

We will also create a folder to hold all of our lecture notes:
1 # Create a directory to hold lectures
2 mkdir ~/ Desktop / python_course
3 cd ~/ Desktop / python_course
4 # in Bash this can be done in one line
5 mkdir ~/ Desktop / python_course && cd "$_"

Page 7

Econ890-04 Python Summer 2019

6 # $_ is a special symbol that captures the arguments of the
last command

7 # we add quotes around it to deal with possible spaces in the
name

Finally, you should launch Jupyter Notebook:
1 # Launch jupyter notebook
2 jupyter notebook

At each lecture we will code in Python using Jupyter notebooks, one for each topic.
When you download Jupyter notebooks from the course website, you will get files ending
in .ipynb. Put these files in the folder python_course you just created, and when you
launch jupyter notebook from that folder, you should see those files in your browser.
If you click on a file, a new tab will open and you can start coding.

Jupyter Notebook Basics
Jupyter notebook is a software (web application) that facilitates sharing interactive doc-
uments, referred to as jupyter notebooks. We will use these notebooks to learn Python.
We can use jupyter notebooks to write code, execute it and interact with its outputs.
Next, we discuss the basics of Jupyter Notebook.

Launch Jupyter Notebook in the python_course folder:
1 source ~/ Desktop /py36/bin/ activate
2 cd ~/ Desktop / python_course
3 jupyter notebook

Your browser should open a new tab with Jupyter Notebook (see Figure 1).
Create a new notebook by clicking on the New button and then selecting Python 3

(see Figure 3).
The notebook will open in a new tab (see Figure 3).
The box you see on the screen is called a cell. There are two types of cells: code

cells and markdown cells.
On code cells you can type Python code. Go ahead and type print("Hello World!").

We can execute the code by going on the menu Cell and clicking on the button Run
Cells. This will run the Python code you just typed, and the output of this code, if any,
will be displayed right below the code (see Figure 4). Alternatively, you can run the code
with the shortcut Ctrl-Enter. You can also run the code in the cell with the shortcut
Shift-Enter. Pressing Shift-Enter will run the code, output its results, and create a
new code cell below the one you just executed.

Notice that after hitting Shift-Enter, you get a new code cell, and its left side has
a blue vertical bar (see Figure 5).

When the cell is in blue, we are in Command Mode. This means we can use some
shortcuts to move between cells and other functionality. If you hit Enter, then you will
go inside the cell and you are now in Edit Mode. Notice that the left side of the cell
is now green. In this mode, you can type text inside the cell, and other shortcuts are
available. You can exit Edit Mode to Command Mode by hitting ESC.

We can change a code cell into a markdown cell by hitting m (for markdown) while
on Command Mode. Notice that now the word In []: disappears from the cell. The

Page 8

Econ890-04 Python Summer 2019

Figure 1: Launching Jupyter Notebook for the First Time on an Empty Folder.

Figure 2: Creating a new notebook.

Page 9

Econ890-04 Python Summer 2019

Figure 3: A new jupyter notebook.

Figure 4: Running Python code in a Code Cell.

Page 10

Econ890-04 Python Summer 2019

Figure 5: Code Cell in Command Mode.

Figure 6: Code Cell in Edit Mode.

Page 11

Econ890-04 Python Summer 2019

markdown cell is a cell that holds rich text, supports the Markdown markup language,
and also Latex. We can use these cells to write information relevant to understand the
code in code cells. Go into Edit Mode and type the following in the markdown cell:

A markdown cell holds text.
We can use the Markdown markup language to format the text.
For example:
- **bold text** is created by surrounding text with double asterisks: **.
Markdown cells also support Latex:
- In-line equations: $f(x)=x^2$
- We can also use some environments, like align:
\begin{align}
f(x) &= x^2\\\\
g(x) &= x^3
\end{align}

Now, hit Control-Enter to execute the markdown cell. This will format the text,
taking care of the Markdown formatting and the Latex, and the output will be displayed
in the cell (see Figure 7).

Figure 7: Rendered Markdown Cell.

Notice that after hitting Control-Enter you exit Edit Mode and go into Command
Mode. You can edit the markdown cell by hitting Enter (going into Edit Mode again).
You can also hit Shift-Enter to format the text and create a new cell below it.

In Command Mode you can move between cells using the arrow keys up and down, or
with the letters j (move down) and k (move up)1. While in Command Mode, you can

1Using the letters k and j as shortcuts to move up and down come from the shortcuts of the text
editor Vim. In Vim you move around text using the letters h (left), j (down), k (up) and l (right). This
is a more efficient method of moving around text instead of using the arrow keys.

Page 12

https://www.markdownguide.org/basic-syntax

Econ890-04 Python Summer 2019

change a cell into a code cell with y, and into a markdown cell with m. You can create a
new cell above the current one with a, below the current one with b. You can delete a cell
with d d. You can cut a cell with x, and paste it with v. When using v to paste, the cell
will be pasted below the current cell, but you can use Shift-v to paste the cell above.
You can copy a cell with c. We can copy (or cut) multiple cells by first selecting many
cells while holding Shift (for example, press Shift-k a few times), and then pressing
either c or x.

In Command Mode you can toggle the line numbers with l. If a cell has an output (like
in a code cell than you just executed), you can toggle the visibility of the output with o.
To save the notebook, go to Command Mode and use the shortcut Command-S, or the menu
File and button Save as... or Save and Checkpoint.

In Edit Mode on a code cell, you can create new lines by hitting Enter or Control-o.
You can move to the end of a line with Control-e, and to the beginning of a line with
Control-a. Notice that Control-o will create a new line below the current line if your
cursor is at the end of the line. Also, Control-o will create a new line above the current
line if your cursor is at the beginning of the line. Lastly, Control-o will split the line if
your cursor is in the middle of the text in a line.

In Edit Mode, you can move around text using the arrow keys. Alternatively, you
can use Control-f to move forward one letter on a line, Control-b to move backwards
one letter on a line, Control-n to jump to the next line, and Control-p to jump to
the previous line2. To delete a single letter after the cursor use Control-d. You can
use Control-k to delete text from the cursor to the end of the line. To undo edits use
Command-Z, and to redo edits use Command-Shift-Z.

In Edit Mode, you can indent the code with TAB. Alternatively, you can use Command-]
to indent the code, and Command-[to dedent. You can add a comment line with
Command-/.

A helpful suggestion is to change the function of the CAPS LOCK key on your keyboard.
To make commands more natural, change the CAPS LOCK to Control. This will allow
you to quickly maneuver in Edit Mode using the keyboard shortcuts (and you will be
one step closer to learning how to navigate on Emacs).

If you are on an Windows, the shortcuts might be slightly different due to the lack
of a Command key. You can always check the shortcuts for your system by going on the
menu Help and clicking on the button Keyboard Shortcuts.

Now you know the basics of how to operate a jupyter notebook. These shortcuts will
only get natural if you use them. It is natural to be slow at the beginning, but you should
get quicker as you practice more and more. Jupyter notebook is used in the industry and
in research labs to share code and results among peers.

Summary
By the end of this lecture notes you should know:

• How to install Python with the installer
2Using the shortcuts Control-b, Control-f, Control-n and Control-p to move the cursor around

text comes from the shortcuts used on the text editor Emacs. This is a more efficient method of moving
around text instead of using the arrow keys. In Emacs, this is also more natural since almost all
commands rely on the Control key.

Page 13

Econ890-04 Python Summer 2019

• What are the main IDEs available for Python

• How programs are found by the terminal and what the PATH variable represents

• What is the idea behind a virtual environment

• How to create a virtual environment with virtualenv

• How to activate and deactivate the virtual environment

• How to install packages with pip

• How to launch Jupyter notebook

• How to create code cells, markdown cells and many shortcuts for the Command
Mode and Edit Mode

If you find any typos or issues with these notes, please send me an email with your
feedback.

References
• Installing Python

• Managing Python Versions

• Jupyter Notebook for Python

• Virtualenv

• Jupyter Notebook

• Tracking Packages

Page 14

mailto:guilhermesalome@gmail.com?subject=Feedback: Python: Topic: Setting Up
https://www.guilhermesalome.com/teaching/2018-empirical-methods-in-financial-econometrics/posts/lecture-14-installing-python.pdf
https://www.guilhermesalome.com/teaching/2018-empirical-methods-in-financial-econometrics/posts/lecture-14-managing-versions.pdf
https://www.guilhermesalome.com/teaching/2018-empirical-methods-in-financial-econometrics/posts/lecture-15-jupyter-notebook.html
https://virtualenv.pypa.io/en/latest/
https://jupyter.org/install
https://code.tutsplus.com/tutorials/understanding-virtual-environments-in-python--cms-28272

