
Econ890-04 Python Guilherme Salomé

Pandas and Statsmodels

The pandas package provides very efficient data structures and tools for analyzing
data. There are two basic data types created by pandas: Series and DataFrame. The
Series class is built to store a column of data. That is, one characteristic and multiple
observations. The DataFrame class is built to store several columns of related data. We
will learn how to work with both classes. Pandas is built-on top of NumPy, and there are
several other packages that rely on Pandas for data management. Later, we will work
with the Statsmodels package, which provides functions for statistical estimation.

1 Install
We will install Pandas, but also two other packages, Statsmodels and Requests. On the
terminal, execute:

1 pip install requests
2 pip install pandas
3 pip install statsmodels ==0.10.0 rc2 --pre

The third line in the code above is to install the newest version of Statsmodels that has
not yet been fully released. We need to do so, because the currently released version has
some incompatibility issues with the most recent SciPy. If you are having issues with the
installation process check the pandas install page or the statsmodels install page.

Pandas should now be available under the pandas namespace. Just like with NumPy,
Pandas is often imported as pd. Test if pandas is working properly on your computer:

• Start the Python REPL and do import pandas;

• If it is imported, then you are good to go.

If you see an error when importing pandas, see this discussion page and this page on how
to fix the issue. Alternatively, uninstall pandas with pip uninstall pandas and install
the previous version with pip install pandas==0.24.

2 Series
We start by creating a Pandas Series. The Series object is like a single column of a
spreadsheet. Each row of the column is one observation of a single characteristic. Below,
we will create a Series to hold the last return of a Stock, and each row will represent the
company name:

Page 1

https://pandas.pydata.org
https://pandas.pydata.org/pandas-docs/stable/reference/series.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://www.statsmodels.org/stable/index.html
https://2.python-requests.org/en/master/
https://pandas.pydata.org/pandas-docs/stable/install.html
https://www.statsmodels.org/stable/install.html
https://github.com/pandas-dev/pandas/issues/27532
https://github.com/pyenv/pyenv/wiki/Common-build-problems

Econ890-04 Python Summer 2019

import numpy as np
import pandas as pd

s = pd. Series (data=np. random . random (5) , name='returns ')
print (s)

You can think of each row as a return observation for a stock. Or each row as
representing a different company, and the characteristic is the return for a month. The
Series object can only hold data of a single type. The values of the column are stored in
a numpy array:

print (s.values , type(s. values))

However, s itself is another class with more features. And only one of its attributes
is the numpy array.

type(s)

Mathematical operations work as they would with a Numpy array:
s + 1
s * 100
np.exp(s)
np.log(s)

The index of the series (the column of numbers) serves as a way to find the data we
want. But, we can change the way the data is indexed. For example, we can change from
numbers to text:

print (s.index)
s.index = ['SPY ', 'AAPL ', 'TSLA ', 'AMZN ', 'COST ']
print (s)
print (s.index)

Notice that now the type of the index is object, instead of float_. We can access
the rows using the same notation as dictionaries:

s['SPY ']
s['AAPL ']

But they are more flexible. For example, we can acess multiple rows:
s[['SPY ', 'AAPL ']]
s[['SPY ', 'AAPL ', 'COST ']]

We can also use the slicing notation:
s[:]
s[0:2]
s[-2:]
s[[0, 1, 3]]

We can use the in operator to test against the series index:
print ('SPY ' in s)
print ('GOOG ' in s)

Page 2

Econ890-04 Python Summer 2019

3 DataFrame
A DataFrame is a collection of many Series. It is like a spreadsheet, where each column
represents one variable and each row an observation.

df = pd. DataFrame (data=np. random . random ((5, 3)))
DataFrame does not take a name argument .
type(df)
print (df)

The rows are indexed by numbers:
print (df.index)
df.index = ['SPY ', 'AAPL ', 'TSLA ', 'AMZN ', 'COST ']
df

The columns are also indexed by numbers, but we can also change the indexing to
represent the characteristics:

print (df. columns)
df. columns = ['return ', 'last dividend ', 'last price ']
df

For a DataFrame there are several ways of indexing. However, we need to be care-
ful, since the usual slicing is not valid anymore. The use of brackets is used to access
columns:

df['return ']
df['last price ']
df[[' last dividend ', 'return ']]

Notice that the DataFrame columns are reordered depending on the order of the columns.
Now, to slice rows we use the method iloc. You can also use [] to slice rows, but

that is not the preferred way and might be confusing, since [] is mainly used for getting
columns.

df.iloc [1:3 , :2]
df.iloc [:, -2:]
df.iloc [[0, 2], [0, 2]]

The method iloc is for selectin rows and columns by integer indexing. We can use the
loc method for selecting rows and columns by label. Labels are the values given to the
indices and columns of the DataFrame:

df.loc [['AAPL ', 'TSLA '], ['return ', 'last price ']]
df.loc['AAPL ', 'return ']
df.loc['AAPL ', :]
Get the labels from the index
df.index [:2]
df.loc[df.index [:2] , ['return ', 'last dividend ']]
Notice that when we select a single column , we get back a

Series :
type(df.loc [['AAPL ', 'TSLA '], 'return '])
The same happens for a single row:
type(df.loc['AAPL ', :])

Page 3

Econ890-04 Python Summer 2019

4 Reading Data
Pandas also implements several methods for reading data into a DataFrame. Let’s use
pd.read_csv to download .csv data and load it into a DataFrame. pd.read_csv can
read a local file, but can also take a url to read an online file:

url = 'https :// raw. githubusercontent .com/python -for - economists /
lecture -notes/ master / supporting /data/ business .csv '

data = pd. read_csv (url)
print (data)

There are several columns that in the data that we won’t use. We can select the only
ones we want by indexing:

data. columns
data. columns [5:]
columns_to_keep = [' Economy Name ', *list(data. columns [5:])]
columns_to_keep
data = data[columns_to_keep]
print (data)

Let’s change the country name of Korea to South Korea:
data.iloc [1, 0] = 'South Korea '
print (data)

Let’s modify the index, so that instead of using numbers, we use the country names:
data. set_index (' Economy Name ')
a new object is created when we call set_index and a new

DataFrame is returned
the original DataFrame was not modified
data
But we do want to modify it:
data = data. set_index (' Economy Name ')
data
data.index

Let’s change the name of some columns:
data. columns = ['total_tax ', 'profit_tax ',

'tax_score ', 'electricity_score ', 'law_score ']
data

Let’s convert the scores to numbers between 0 and 1:
data['tax_score '] = data['tax_score ']/100
data[' electricity_score '] = data. electricity_score /100
data. law_score = data. law_score /100

Let’s create a column with an equally weighted score based on the scores for taxation,
electricity and law enforcement. There are a few ways of doing so:

first = (data. tax_score + data. electricity_score + data.
law_score)/3

second = np.sum(data.iloc [:, 2:], axis =1) /3
third = data.iloc [:, 2:]. mean(axis =1)
all(first == second)

Page 4

Econ890-04 Python Summer 2019

all(second == third)
data['score '] = data [[' tax_score ', 'electricity_score ', '

law_score ']]. mean(axis =1)
data

5 Plotting
Pandas is also built on top of Matplotlib. The Series and DataFrame classes provide
methods to automatically plot what is stored in these objects:

Create a bar plot with the scores for each country:
ax = data['score ']. plot(kind='bar ', title=' Business Score ')
ax.set(ylabel =' Score (0 to 1) ')

You can select the data you want to plot, and even do plot each column on a different
axis:

ax = data [['score ', 'total_tax ']]. plot(kind='bar ', subplots =
True , title =[' Business Score ',' Total Taxes '])

Similar functionality is available for line and scatter plots.
Let’s sort the data by the score and re-plot:

data = data. sort_values (by='total_tax ', ascending =True)
ax = data['total_tax ']. plot(kind='bar ')

6 Time Series
Let’s use the module requests to obtain financial data from the Federal Reserve Bank
of St. Louis.

import requests

Download US Unemployment Rate
url = 'http :// research . stlouisfed .org/fred2/ series / UNRATE /

downloaddata / UNRATE .csv '
response = requests .get(url)
if response . status_code == 200:

print (" Request succeeded .")

The content of the csv file is stored in the response:
print (response . content)
The method decode can help:
print (response . content . decode ())

We can store the contents into a local csv file:
with open(' UNRATE .csv ', 'w ') as f:

f. writelines (response . content . decode ())

Look at the file with an editor. The first row contains the column headers. The
first column contains dates for the observations, and we will use it as the index of the
DataFrame. The second column contains the unemployment rate.

We can use pd.readcsv to load the data in a DataFrame:

Page 5

https://2.python-requests.org/en/master/
https://fred.stlouisfed.org
https://fred.stlouisfed.org

Econ890-04 Python Summer 2019

data = pd. read_csv (' UNRATE .csv ', index_col =0, parse_dates =True)
If the parse_dates input is True , it tries to parse the

values in
the index as dates.
type(data)
data. dtypes

We can look a the first rows of the data and at the last rows of the data with the
methods head and tail:

data.head ()
data.tail ()

Get some summary statistics:
print (data. describe ())

Change the number of decimal places PANDAS use:
pd. set_option ('precision ', 1)
print (data. describe ())

Change the column name:
data. columns = [' Unemployment Rate ']

We can plot the time series:
ax = data.plot(kind='line ')

Or only a few years:
ax = data ['2009 ':]. plot(kind='line ')

7 Using an API
Some websites offer an API (application programming interface) that we can use to
request data. For example, the World Bank makes available several different indicators
via their API. The easiest way to work with their API is to go to the indices page, click on
the index you are interested in, and then right-click on the CSV button and copy the link
(an url). Alternatively, you could click on the EXCEL button to get the url for downloading
the spreadsheet. Having the url, you can request the data in Python by submitting a get
request with the requests module.

Let’s download the GDP per capita series. If you use the download format for csv
files, you will get back a .zip instead. We can deal .zip files directly in Python via the
built-in zipfile module. For more details read this stack post. We will download the
Excel file instead:

url = 'http :// api. worldbank .org/v2/en/ indicator /NY.GDP.PCAP.CD?
downloadformat =excel '

response = requests .get(url)
if response . status_code == 200:

print (" Request succeeded .")
with open(' gdp_capita .xls ', 'wb ') as f:

open with the option write binary , since xls is a
binary file

f.write(response . content)
print (" File saved .")

Page 6

https://data.worldbank.org/indicator
https://datahelpdesk.worldbank.org/knowledgebase/articles/889392-about-the-indicators-api-documentation
https://data.worldbank.org/indicator
https://docs.python.org/3/library/zipfile.html
https://stackoverflow.com/questions/9419162/download-returned-zip-file-from-url

Econ890-04 Python Summer 2019

We can load Excel files in pandas as easy as csv files. You might need to install the
xlrd package (pip install xlrd).

data = pd. read_excel (' gdp_capita .xls ', sheet_name ='Data ',
skiprows =3, index_col =1)

type(data)
Recover the GDP per capita for Brazil
data. columns
data.index
gdp_brazil = data.loc['BRA ', data. columns [3:]]
type(gdp_brazil)
gdp_brazil

Let’s plot it:
ax = gdp_brazil .plot(kind='line ', color='black ', grid=True ,

title =" Brazil 's GDP per Capita (in US$)")

8 Panel Data
We will use Pandas to work with panel data. The OECD makes available data on real
minimum wages of several countries. I have downloaded that data and uploaded to
Github, we will download it and store it in a pandas DataFrame:

url = 'https :// raw. githubusercontent .com/python -for - economists /
lecture -notes/ master / supporting /data/ oecd_real_wage .csv '

data = pd. read_csv (url , index_col ='Time ', parse_dates =True)
print (data.head ())

Because we have panel data, we will see several repeats of the same country, at different
time periods. Let’s first clean the columns and keep only what really matters.

data. columns

We do not need both the country name and the code. The column Series describes the
two types of wages available, but the name is too long. Let’s use the column SERIES
instead. We can keep the Pay Period column since it descibes whether wages are annual
or hourly. We also need the Value column, since that contains the wages. All the other
columns can be thrown away.

data = data [[' Country ', 'SERIES ', 'Pay period ', 'Value ']]

The proper way to rename columns is with the method rename:
data. rename (columns ={' SERIES ': 'Series ', 'Value ': 'Real Wage '},

inplace =True)
print (data)

We would like to index our data by the time period. We would also like to divide
the data by the country, by the type of the series (USD PPPs or USD exchange rates),
and by the type of pay period (annual or hourly). Dividing the data into sub-categories
allows us to express multi-dimensional data in a 2-D table! To do so, we need to use a
pivot_table, which basically breaks down columns (or indices) by several categories:

data. columns
data.index

Page 7

https://stats.oecd.org/Index.aspx?DataSetCode=RMW
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.pivot_table.html

Econ890-04 Python Summer 2019

data = data. pivot_table (values ='Real Wage ',
index='Time ',
columns =[' Country ', 'Series ', 'Pay

period '])
print (data)

Now we have a table where the index is given by the years, and the columns are split
by the country, then by the series, and then by the pay period.

type(data. columns)
print (data. columns)

AMultiIndex object is now used to store the columns. One of its attributes is levels:
print (data. columns . levels)

The attribute levels is a list of lists, where the first element (which is a list) contains
the values of the countries, the second list contains the values of the Series column,
and the third list contains the values of the Pay period column. The MultiIndex is a
hierarchical structure, and the order it follows was the order that was given in the
pivot_table function. In this case, the labels first in the hierarchy are the Country
names, then comes the Series names, and last the Pay period.

We can select columns of the data by using the slicing operator:
data['Brazil ']

The code above goes into the column of the country Brazil, and displays all the values for
this country. We go down 1-level in the hierarchy, and now there are only two divisions
for columns, the first is for Series and the second for Pay period.

We can get multiple countries as well:
data [[' Brazil ', 'Chile ']]

But now we still have the Country hierarchy.
We can go deeper in the hierarchy:

data. columns . levels
data['Brazil ']['PPP ']
data['Brazil ']['PPP '][' Hourly ']

The slices above can be used to access data in a single columns (or in a single column for
each hierarchy level).

To get multiple columns, we use the loc method:
data.loc [:, ['Brazil ', 'Chile ']]
type(data.loc [:, ['Brazil ', 'Chile ']])

In pandas, the use of [] when slicing defines the columns that we want to get, but
only based on the first level of the hierarchy. If we want to go lower in the hierarchy, we
need to parentheses (a tuple). A tuple specifies a complete multi-level key, where each
element of the tuple specifies the keys for one level:

data.loc [:, ('Brazil ', 'EXR ')]
data.loc [:, ('Brazil ', 'EXR ', 'Annual ')]

Each element of the tuple represents the key in one of the levels of the hierarchy.
If we also use brackets, then we are defining multiple columns to get at each hierarchy

level:

Page 8

https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html

Econ890-04 Python Summer 2019

data.loc [:, ([' Brazil ', 'Chile '], ['EXR '])]

The : means we want all rows. Then we have a big tuple (....). A tuple has a special
meaning when being used with a MultiIndex. Each element of the tuple is related to each
level of the MultiIndex. The first element of the tuple is a list: [’Brazil’, ’Chile’].
A list has a special meaning when being used with a MultiIndex. It species a list of keys
in the same hierarchical level to retrieve. In this case, we are telling loc to retrieve the
columns named ’Brazil’ and ’Chile’. The second element of the tuple is a list with
one element: [’EXR’]. It tells loc that, given the choices for the first hierarchical level,
it should get the column named ’EXR’ on the second level.

We can go lower on the hierarchy and also define the keys for the third level:
print (data.loc [:, ([' Brazil ', 'Chile '], ['EXR ', 'PPP '], ['

Annual '])])

Another useful method is stack. It takes a column name of the MultiIndex and
shifts it to the row indices. In doing so, it transforms the row index in a MultiIndex
too!

data.head ()
data.stack(level='Country ').head ()

Now, the table has a MultiIndex for the indices, where the 1st level of the hierarchy is
the time period and the second level is the country name.

Calling stack without any arguments shifts the lowest hierarchy of the columns. In
our case, it would shift the Pay period:

data.stack ().head ()
type(data.stack ().head ().index)
hierarchy
data.stack ().index.names

We can also use numbers instead of labels with stack:
Shift Country :
data.stack(level =(0))
Shift Series
data.stack(level =(1))
Shift Pay Period
data.stack(level =(2))
We can shift multiple levels :
data.stack(level =(1, 2))

To get a cross-section of the data, we can fix the time period:
data.loc ['2018 ']. stack(level =(1, 2))
now the column is back to being a regular Index
data.loc ['2018 ']. stack(level =(1, 2)). columns

If you want to use the countries names as the main index, we can transpose every-
thing:

data ['2018 ']. stack(level =(1, 2)). transpose ()

Let’s go further and select only the annual wage and those measured using the
purchasing-power parity: We will do this in 2 ways. First, by direct selection of the
columns:

Page 9

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.stack.html

Econ890-04 Python Summer 2019

csec = data.loc [:, (slice(None), ['PPP '], ['Annual '])]
csec.head ()

The slice(None) means that we want to select all of the values of the 1st hierarchical
level.

We can now drop the Series and Pay period levels since they are fixed:
csec = csec. droplevel (level =(1, 2), axis =1)
csec

Second, using the xs method:
help(data.xs)

We need to pass it the key representing the values. We also need to specify axis=1, since
we are getting the data from columns. And specify what is the hierarchy because we are
dealing with MultiIndex:

csec = data.xs(key =('PPP ', 'Annual '), axis =1, level =(' Series ',
'Pay period ')).copy ()

csec.head ()
type(csec. columns)

We use the copy method because we are going to modify this data. Without the .copy,
we would be getting back a "view" of the data. Pandas tries to be very efficient, so it does
not copy data most of the time. This means that slicing returns a "zoomed in" version of
the table (referred to as a "view"). If we try to modify a zoomed in version of the table,
we will get a warning, because it could affect the rest of the data. We need to copy the
data from the zoomed in version of the table so that we get a new table (different space
in memory). And this new table we can modify. This was achieved by using the method
copy.

We can check for missing values with the isnull method: Returns True if np.NaN is
found, otherwise it returns False:

csec. isnull ()
Count by column (sum by row):
csec. isnull ().sum(axis =0)

There are 14 missing values for Germany and 1 for Japan.
Pandas provides a helper function for filling missing values: fillna. We will use the

method ’ffill’ to use the last valid value to fill the next missing value:
csec['Japan ']. fillna (method ='ffill ')
csec['Japan ']
csec['Japan '] = csec['Japan ']. fillna (method ='ffill ')
csec['Japan ']

For Germany we have too many missing values:
csec['Germany ']

Too many missing values, so we can try going back to the data source and see what
happened (maybe an error?) Try to interpolate the data, or simply drop the country.
Let’s drop the column:

csec = csec.drop(labels =[' Germany '], axis =1)
'Germany ' in csec. columns

Page 10

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isnull.html?highlight=isnull
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html?highlight=dataframe.fillna#pandas.DataFrame.fillna

Econ890-04 Python Summer 2019

9 Merge, Join and Concatenate
We will use another data set that contains data on continent names and countries to add
a new level to our panel data:

url = 'https :// raw. githubusercontent .com/python -for - economists /
lecture -notes/ master / supporting /data/ continent_countries .csv '

continents = pd. read_csv (url)
continents

Pandas provides several methods of combining different DataFrame and Series objects.
We will use the merge method to merge the panel data to the continents DataFrame we
just loaded. To learn more about merge, and about the join and concatenate methods
read the Method, join and concatenate reference page.

The continents and csec have an index in common: the country names.
csec
continents

We can use the country names as a key to merge the two tables, this is known as a
one-to-one join.

Let’s transform the two DataFrame objects so that the column Country is their only
row index:

continents .head ()
continents = continents . set_index (keys='Country ')
continents .head ()

csec = csec. transpose ()
csec.head ()

We now have two tables, where both of them have as index a column with Country
names. Notice that the indices must be unique for this to work. We want to keep all the
columns of the csec table (each column represents a year) and add the column with the
continent names from continents.

The merge method takes the inputs:

• left: the first table;

• right: the second table;

• leftindex: specifies if we want to use the index from the left table as the key to
merge the two tables;

• how: specify what keys to use when merging the tables. If we are using multiple
keys, we can specify to take the union of the keys, or the intersection. In our case,
we will use only the country names from the csec tables as the key.

• rightindex: specifies if we want to use the index from the right table as the key to
merge the two tables. In our case, we want this to be True.

The keys that we specify on the two tables are the values that will be used to match the
values from the tables. By specifying the how input as ’left’, we choose to merge the
two tables but keep the keys from the left table as the index, dropping the other keys
from the right table that do not have a counterpart on the left table.

Page 11

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#merge-join-and-concatenate

Econ890-04 Python Summer 2019

len(csec.index. values)
len(continents .index. values)
merged = pd.merge(left=csec , right=continents , left_index =True ,

right_index =True , how='left ')
len(merged .index. values)
merged .head ()

We now have an extra column named continent at the end of the table.
We need to check for missing values in the new column!

missing = merged . Continent . isnull ()
missing

We can use a Series of boo leans as an index to slice another Series:
merged . Continent [missing]
countries = merged . Continent [missing]. index. values
countries

Korea, Russia and Slovakia are missing continents.
We can fix those:

for country , cont in zip(countries , ['Asia ', 'Asia ', 'Europe '])
:

merged .loc[country , 'Continent '] = cont
merged . Continent

Let’s reset the index so that Country becomes a column again:
merged = merged . reset_index ()
merged .head ()

Let’s change the index so that we split the data by continent and by country: That is,
let’s create a MultiIndex with Continent as the first level, and Country as the second
level:

merged = merged . set_index (keys =[' Continent ', 'Country '])
merged .head ()
merged

Let’s sort by the Continent index so that the table is easier to visualize:
merged = merged . sort_index (level='Continent ')
merged

10 Aggregating Data
Now that we have a nicely formatted panel, we can aggregate and visualize the data.

Time average of the wages by country and by continent:
merged .mean(axis =1)
axis =1: will average across all columns

Time series of average wage by Continent:
average across all rows of each Continent
merged .mean(axis =0, level='Continent ')

Time average of wages by continent:

Page 12

Econ890-04 Python Summer 2019

merged .mean(axis =0, level='Continent ').mean(axis =1)

Highest wage in each continent at each year:
merged .max(axis =0, level='Continent ')

Notice that the columns are times, but there is an issue with the values:
merged . columns

The data type is object, but we want it to be datetime:
pd. to_datetime (merged . columns)
merged . columns = pd. to_datetime (merged . columns)
merged . columns .name = 'Time '
merged . columns

Having the correct type for dates allows us to easily slice by year:
Highest wage on 2018 by continent
merged ['2018 -1 -1 ']. max(axis =0, level='Continent ')

An alternative and more general approach to aggregating data is with the groupby
method. The idea is to split the table into groups (defined by some criteria), then apply
a function to each of the groups (group by group), and then combine the results in a
table again.

Let’s compute the time average of the wages by country and by continent:
grouped = merged . groupby ('Continent ')

grouped is a collection of groups. It is basically a dictionary, where each key corre-
sponds to one of the groups defined by the splitting rule. In this case, the rule was to
split by Continent, so each key is going to be the name of the continent. We can see each
of the groups like so:

for key , group in grouped :
print (f"Key: {key }")
print (f"Group :\n {group.head ()}\n")

We can now apply a function to each group to aggregate the values:
grouped .mean ()
Equivalents :
merged . groupby ('Continent ').mean ()
merged .mean(axis =0, level='Continent ')

Another example. Get the number of countries in each group (continent):
merged . groupby ('Continent ').size ()

We can also supply custom functions to aggregate the data:
Compute median
merged . groupby ('Continent '). aggregate (np. median)
Compute variance
merged . groupby ('Continent '). aggregate (np.var)
Compute several values at once
merged . groupby ('Continent '). aggregate ([np.mean , np.median , np.

argmin])
Can choose to apply functions to specific columns
merged . groupby ('Continent '). aggregate ({ '2017 -1 -1 ': np.sum })

Page 13

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html#pandas.DataFrame.groupby

Econ890-04 Python Summer 2019

Or even different functions per column
merged . groupby ('Continent '). aggregate ({ '2017 -1 -1 ': np.sum ,

'2018 -1 -1 ': np.max })

You should read the Group By reference page for further details.
We can use the result of the grouping to plot:

merged . transpose ()\
. groupby (level='Continent ', axis =1)\
.mean ()\
.plot(kind='line ')

Let’s create a bar plot of the time average real minimum wage for the different coun-
tries:

time_avg = merged . transpose ().mean(axis =0)
time_avg
time_avg = time_avg . droplevel (0)
time_avg
time_avg . sort_values ().plot(kind='bar ')

11 Resampling
When working with data index by time, we can leverage Pandas functions to re-sample
our data to different frequencies. What follows is a simple example, but for a more in
depth understanding you should read the Time Series and Date functionality reference
page.

Change index to time:
merged = merged . transpose ()
merged

Change frequency to "year start":
merged .index.freq = 'AS '
merged .index

Pandas identified all dates started in january, so it appended the JAN to reflect that. See
the Frequency (Offset Aliases) reference page for the possible frequencies.

The resample method is similar to a group by, but works with time indices. To
down-sample to biyearly, while averaging the values:

merged . resample ('2AS ').mean ()

Other aggregation methods are available. To down-sample to biyearly, but taking the
most recent value instead of the average:

merged . resample ('2AS '). first ()

We can also up-sample:
Upsample to every month
merged . resample ('MS ').first ()
Interpolate to fill the missing values
merged . resample ('MS ').first (). interpolate (method ='linear ')
Use spline to interpolate
merged . resample ('MS ').first (). interpolate (method ='spline ',

order =3)

Page 14

https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.resample.html#pandas.Series.resample

Econ890-04 Python Summer 2019

We used the interpolate function to fill the missing values when upsampling.
We can plot to see the interpolation results:

upsampled = merged . resample ('MS ').first (). interpolate (method ='
spline ', order =3)

Drop Continent and select Brazil
brazil = upsampled . droplevel (0, axis =1)['Brazil ']
Plot the values
ax = brazil .plot(kind='line ', color='green ', linewidth =0.5)
brazil . resample ('YS ').first ().plot(ax=ax , kind='line ', style

='.', color='black ')
ax. legend ([' Interpolation (Cubic Spline)', 'Original Data '])
ax.grid(True , linestyle ='--')

12 Statsmodels
The Statsmodels package can be used to estimate several classical statistical models. It
is built on top of Pandas and Numpy. We will learn how to use its linear regression tools.

Let’s start by loading some financial data (Fama-French 3 factors):
url = "https :// raw. githubusercontent .com/python -for - economists /

lecture -notes/ master / supporting /data/ ff3factors .CSV"
factors = pd. read_csv (url , skiprows =3, index_col =0, parse_dates

=True)
factors
factors .index
factors .index = pd. to_datetime (factors .index , format ='%Y%m ')
factors .index

Let’s also load data for the Apple stock:
url = "https :// raw. githubusercontent .com/python -for - economists /

lecture -notes/ master / supporting /data/ monthlyAAPL .csv"
stock = pd. read_csv (url , skiprows =0, index_col =0, parse_dates =

True)
stock = stock['Close ']
stock.index

Compute the arithmetic returns:
returns = stock. pct_change ()
returns
convert to returns in percentage
returns = 100* returns
returns

Let’s merge the Fama-French factors with the monthly returns from Apple.
merged = pd.merge(left=returns , right=factors , left_index =True ,

right_index =True , how='left ')
merged

Compute excess stock return:
merged [' Excess Return '] = merged ['Close '] - merged ['RF ']
merged

Page 15

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.interpolate.html
https://www.statsmodels.org/stable/index.html

Econ890-04 Python Summer 2019

Drop rows with missing observations:
merged = merged . dropna ()
merged

Let’s import Statsmodels:
import statsmodels .api as sm

The sm has a class for OLS. We will run a linear regression of stock return on risk-free
rate and market excess return First, we build the model:

model = sm.OLS(endog= merged [' Excess Return '], exog= merged ['Mkt -
RF '])

type(model)

We can use model to estimate the parameters:
results = model.fit ()
type(results)

The results object holds all the estimates and many other statistics. We can visualize
all the information at once by calling the summary method:

print (results . summary ())
dir(results)
print (results . params)
print (results . rsquared)

The predict method of results can be used to compute ŷ for a given x:
results . predict (exog =[5.3])
results . predict (exog =[5.3 , -2.3, -10.3])

We can plot the original data and the estimated model:
ax = merged .plot(kind='scatter ', x='Mkt -RF ',

y=' Excess Return ', alpha =0.4 , label='observed
')

ax. scatter (merged ['Mkt -RF '], results . predict (),
color='k', alpha =0.6 , label='predicted ')

ax.set(title=' Predicted Monthly Excess Return from Regression ',
xlabel =' Market Excess Return (in %) ',
ylabel =' Stock Excess Return (in %) ')

ax. legend ()
ax.grid(True , linestyle ='--', alpha =0.5)

Extend the regression with the other factors, one by one
model2 = sm.OLS(endog= merged [' Excess Return '],

exog= merged [['Mkt -RF ', 'HML ']])
model3 = sm.OLS(endog= merged [' Excess Return '],

exog= merged [['Mkt -RF ', 'HML ', 'SMB ']])
results2 = model2 .fit ()
results3 = model3 .fit ()

To compare the results of several regressions we can use a helper function:
from statsmodels .iolib. summary2 import summary_col

summary_col takes a list of objects representing different OLS results:

Page 16

Econ890-04 Python Summer 2019

summary_col ([results , results2 , results3], float_format = '%.2f',
model_names =('CAPM ', 'FF 2 Factors ', 'FF 3 Factors

'),
stars=True , regressor_order =['Mkt -RF ', 'HML ', 'SMB

'])

To also display the R-squared and other statistics we need to use the info=_dict
input. =info_dict is a dict, where the keys will be used a labels for the rows and the
values are functions that extract the values from the regression results object.

info_dict = {'R-squared ': lambda r: f"{r. rsquared :.2f}",
'Total Observations ': lambda r: f"{r.nobs :.0f}"}

summary_col ([results , results2 , results3], float_format = '%.2f',
model_names =('CAPM ', 'FF 2 Factors ', 'FF 3 Factors

'),
stars=True , regressor_order =['Mkt -RF ', 'HML ', 'SMB

'],
info_dict = info_dict)

Notice that these summary functions generate tables. You can store the tables in a
variable:

table = summary_col ([results , results2 , results3], float_format
= '%.2f',

model_names =('CAPM ', 'FF 2 Factors ', 'FF 3 Factors
'),

stars=True , regressor_order =['Mkt -RF ', 'HML ', 'SMB
'],

info_dict = info_dict)

And one of the methods of the table is exporting to latex:
dir(table)
print (table. as_latex ())

If you also install the Pyperclip package:

1 pip install pyperclip

Then you can automatically copy the table to the clipboard and then you can simply
paste it into your latex files:

import pyperclip
pyperclip .copy(table. as_latex ())

Statsmodels is not limited to linear regressions, and also provides functions for esti-
mating:

• Generalized Linear Models

• Generalized Estimating Equations

• Generalized Additive Models

Page 17

https://github.com/asweigart/pyperclip
https://www.statsmodels.org/stable/glm.html
https://www.statsmodels.org/stable/gee.html
https://www.statsmodels.org/stable/gam.html

Econ890-04 Python Summer 2019

• Robust Linear Models

• Linear Mixed Effects Models

• Regression with Discrete Dependent Variable

• Generalized Linear Mixed Effects Models

• ANOVA

• Time Series

• Vector Autoregression

• Survival and Duration Analysis

• Nonparametric Methods

• Generalized Method of Moments

Page 18

https://www.statsmodels.org/stable/rlm.html
https://www.statsmodels.org/stable/mixed_linear.html
https://www.statsmodels.org/stable/discretemod.html
https://www.statsmodels.org/stable/mixed_glm.html
https://www.statsmodels.org/stable/anova.html
https://www.statsmodels.org/stable/tsa.html
https://www.statsmodels.org/stable/vector_ar.html
https://www.statsmodels.org/stable/duration.html
https://www.statsmodels.org/stable/nonparametric.html
https://www.statsmodels.org/stable/gmm.html

	Install
	Series
	DataFrame
	Reading Data
	Plotting
	Time Series
	Using an API
	Panel Data
	Merge, Join and Concatenate
	Aggregating Data
	Resampling
	Statsmodels

