
Econ890-04 Python Guilherme Salomé

Numpy

We have covered the basics of the Python language. We know how to work with the
basic data types, create functions and handle exceptions. To continue learning Python,
we will implement the ordinary least squares (OLS) estimator for the parameters of a
linear regression under the classical assumptions.

Let’s assume that the economic model of interest is given by:

y︸︷︷︸
n×1

= X︸︷︷︸
n×K

β︸︷︷︸
K×1

+ ε︸︷︷︸
n×1

where y is a n × 1 vector of observed dependent variables, X is an n × K matrix of
observed explanatory variables, β is a K × 1 vector of unknown parameters and ε is a
n× 1 vector of unobserved explanatory variables.

We know that the OLS estimator of β is given by:

β̂ = (X ′X)−1X ′y

Our first objective is to implement this estimator.
Using a bottom-up approach, we need to understand:

1. The basic data types in Python;

2. How to create vectors and matrices;

3. How to do matrix transposition, inversion and multiplication;

4. How to create a function that given X and y produces β̂;

5. How to generate data to test out our code.

Step 1 was already accomplished with our last lecture. We now turn to creating vectors
and matrices in Python.

To do so, we will use a package called NumPy. NumPy is a package for scientific
computing in Python. It implements an object to represent N-dimensional arrays (vec-
tors, matrices and higher dimensional matrices). It also has linear algebra functions and
random number generators.

Why do we need Numpy? Python is a dynamically typed language, it infers the type
of a variable at runtime. This means that when Python store variables in memory, it not
only stores the variable’s value, but also its type. Then, when we perform a computation,
like adding two variables (x+y), Python looks up the type of x and the type of y, and
applies the definition of + to those types if it makes sense to do so. If those types are
integers, for example, then Python performs an integer addition. However, if the type of
x is integer, but y is a list, then the operation is not defined and Python will raise an
exception (error). This type of checking is called a runtime type check.

Page 1

https://docs.scipy.org/doc/numpy/index.html

Econ890-04 Python Summer 2019

The runtime type check makes programming in Python a pleasure, since you do not
have to worry about types all the time. However, it does lead to inefficiencies when we
start performing operations on large datasets. Numpy solves those inefficiencies.

Numpy introduces a new type of list, called a Numpy array. In an array, the type of
all elements is the same. This has two benefits. First, the type is only stored once, so
performing operations with numpy is much faster than with Python lists. Second, since
all elements have the same type, their position in the memory is easy to compute. This
means that accessing random elements in a numpy array is quick.

Numpy also provides a set of operations for numpy array, all implemented in C. Arrays
are not required to be 1 dimensional, so the class can also deal with matrices and higher
dimensional arrays. Numpy is the base of other higher-level packages, like pandas and
scipy.

1 Install
Numpy can be installed with pip. After activating your environment in the terminal,
run:

pip install numpy

Now numpy is available for Python. In the jupyter notebook, we can import the package
by executing:

import numpy

The import will look for the package named numpy, will find it and load all of its content.
The methods, variables and objects defined in the Numpy package will be available in
the object numpy.

You will often see the following command being used:
import numpy as np

Which makes the numpy functionality available via np. This is often used because it
requires less typing to use numpy.

2 Basics
To create a matrix with numpy we run:

matrix = np.array ([[0 , 1, 2, 3],
[4, 5, 6, 7]])

This creates a new matrix with dimensions 2 by 4.
Basic properties of np.ndarray:

type(matrix)
print (f’Shape of matrix = { matrix .shape }’)
print (f’ Number of axes = { matrix .ndim }’)
print (f’Total number of elements = { matrix .size }’)

The elements of the matrix can be accessed by using its indices. Since the matrix has
2 dimensions, we need to give it two indices: an index for the row and an index for the
column. Remember that in Python the indexing starts at 0.

Page 2

Econ890-04 Python Summer 2019

print (matrix [0, 0]) # element at row 0 and column 0
print (matrix [1, 3]) # last element of the 2nd row
print (matrix [1, -1]) # last element of the 2nd row
print (matrix [-1, -1]) # element at last row and last column

We can use : to slice the matrix and obtain all values of a certain row or of a certain
column:

print (matrix [0, :]) # first row , all columns
print (matrix [:, 0]) # all rows , first column
print (matrix [0, 1:3]) # first row , columns 1 and 2
print (matrix [:, 1:3]) # all rows , columns 1 and 2

We can also select specific columns or rows:
print (matrix [:,[0, 3]]) # all rows , first column and last column

Like the built-in function range, numpy also provides a way to generate a sequence
of numbers with the function np.arange:

vector = np. arange (20)

We can reshape this vector into a matrix:
matrix = vector . reshape (4 ,5)

Notice that when converting a vector into a matrix we need to decide whether to put the
values first into columns, or first into rows. For example, if we have a vector [1, 2, 3, 4]
and want to reshape it into a 2x2 matrix, there are 2 natural possibilities: create the new
matrix by filling each row first, or create the matrix by filling each column first.

Fill Rows:
(

1 2
3 4

)
vs. Fill Columns:

(
1 3
2 4

)

The default in Python is to fill each row before moving to the next (first matrix above).
The behavior is controlled by a keyword argument order given to the reshape method.

a = np. arange (4)
Different ways of reshaping
fill each row , row by row
a. reshape ((2, 2), order=’C’) # this is also the default
fill each column , column by column
a. reshape ((2, 2), order=’F’)

We can also get the type of the values stored in the matrix:
print (matrix .dtype)

Observe that the np.array takes a list of numbers as input, it does not take numbers as
separate inputs:

np.array ([1 ,2 ,3 ,4]) # correct , creates a vector
np.array (1 ,2 ,3 ,4) # wrong

If a list of lists is given, then we get a two-dimensional array:
np.array ([[0 , 1], [1, 2]])

Page 3

Econ890-04 Python Summer 2019

3 Data Types
The data type of values stored in a matrix are usually inferred when the values are
assigned:

matrixOfIntegers = np.array ([[0 , 1, 2, 3, 4, 5],
[5, 4, 3, 2, 1, 0],
[10, 9, 8, 7, 6, 5]])

print (matrixOfIntegers .dtype)
matrixOfFloats = np.array ([[1.0 , 2.3] ,

[-5.1, 9.8234]])
print (matrixOfFloats .dtype)

The first matrix has the type int64 and the second matrix has the type float64. Notice
that if we try to change a value in the first matrix to a float, it will be implicitly converted
to an integer:

print (matrixOfIntegers [0, 0])
matrixOfIntegers [0, 0] = 0.34
print (matrixOfIntegers [0, 0])

We can specify the type of data when we first create the matrix:
matrix = np.array ([[0 , 1], [2, 3]], dtype=’float64 ’)
matrix [0, 0] = 3.2
print (matrix)

The matrix is initialized with integers, but we specify the type to be a float, so the values
are implicitly converted to floats.

The most common data types for numbers are:
Data Type Description
int_ default integer type (usually int64)
float_ default float type (usually float64)
complex_ default complex type (usually complex128)
bool_ default boolean type (uses a byte)
int<bytes> where <bytes> can be 8, 16, 32 or 64
uint<bytes> unsigned integer
float<bytes>
complex<bytes>

Remember that defining a data type will convert the initial values to the defined
type:

matrix = np.array ([[0 , 1],
[’False ’, True],
[’a’, ’b’]], dtype=’bool_ ’)

If the values cannot be converted, an error is raised:
matrix = np.array ([[0 , 1], [2, ’abc ’]], dtype=’float_ ’)

The command raises a ValueError and informs us that the string ’abc’ cannot be con-
verted to a float.

It is also possible to store strings in numpy arrays (matrices):
names = np.array ([’A’, ’B’, ’C’, ’D’], dtype=’str_ ’)
print (names.dtype)

Page 4

Econ890-04 Python Summer 2019

Notice that the type is actually "<U1". The "U" stands for "unicode string" and "1" is
the number of characters. Since all values passed to the np.array constructor have just
1 character, numpy assumes all data that we will store on this matrix will have a single
character. This might not be the case, and if we try to store a bigger string:

names [0] = ’Guilherme ’
print (names [0])

Instead of storing the entire string, only the first character was stored. We can let numpy
know that we need more space in memory by defining how many characters we need:

names = np.array ([’A’, ’B’, ’C’, ’D’], dtype=’<U100 ’)
names [0] = ’Guilherme ’
print (names [0])

Now we can store 100 characters in each element of the matrix.
Numpy can handle other data types, even objects:

grades = np.array ([{’A’: 9, ’B’: 8, ’C’: 10},
{’A’: ’Econ ’, ’B’: ’Finance ’, ’C’: ’Econ ’}])

In this case the data type is object, and grades is a matrix with two elements, where
each is a dictionary. The type object is used for creating arrays that can hold any data
type, since everything is an object in Python. In this case, we are loosing the efficiency
that comes with Numpy, since we are creating an array that can hold different types of
data. In some cases we might still want to do so, since Numpy provides several useful
functions for dealing with arrays.

The complete documentation on specifying data types (dtype) can be found here.
Arrays can also hold more than one type, details on how to hanlde multiple types can be
found here.

4 Empty and Pre-Filled Arrays
On many cases we will want to create an empty array and populate as the code is executed.
We can create arrays pre-filled with ones or zeros via:

ones = np.ones ((4, 5))
zeros = np.zeros ((10 , 3))

The functions np.ones and np.zeros take a tuple as input, which defines the shape of
the matrix to be created.

The function np.empty creates an "empty" matrix of the given shape and data type:
empty = np.empty ((4, 10), dtype=’float_ ’)

The matrix is filled with whatever values are in the memory. If you use this command
make sure all values are correctly replaced, otherwise you may run into bugs.

It is also possible to pre-fill a matrix with any given value:
full = np.full ((10 , 3), 3.14)
manyStrings = np.full ((5 ,5) , ’StudentName ’)

Page 5

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#arrays-dtypes
https://docs.scipy.org/doc/numpy/user/basics.rec.html#module-numpy.doc.structured_arrays

Econ890-04 Python Summer 2019

5 Operations
Arithmetic operations with numpy arrays are always element wise.

a = np. arange (10)
b = np.ones (10)
print (f’Type a = {a.dtype}, b = {b.dtype }’)
c = a + b
print (c)
print (f’Type c = {c.dtype }’) # implicit conversion of a to float
print (c*10)
print (c - 10)
print (c**2)

Notice that ** is the same as pow(c,2).
Comparisons are also done element wise:

print (c > 5)

Booleans can be used to recover elements of an array:
c[c >5]

You can recover the indices that satisfy a condition with the np.where function:
indices = np.where(c <= 2)
print (indices)
print (c[indices])

It is possible to manipulate all elements of an array and accumulate the values:
some random values to stand in as returns
returns = np. random . random ((78 , 5))
returns /= 100 # divides everything by 100
help(np.sum)
RV = np.sum(returns **2, axis =0)
annRV = 100* np.sqrt (252* RV)
print (f’RV = {RV}\n’

f’ annualized RV = {annRV }’)

The np.random.random is a function that generates random values in the interval [0, 1).
The np.sum function accumulates over elements in an array by summing them. Calling
np.sum without the axis argument will sum all of the elements in a matrix, resulting in
a single value. The keyword argument axis=0 instructs the sum to occur along the rows.
Numpy provides many universal mathematical functions, such as np.sqrt for computing
the square root of a number (remember, element wise).

We can find the minimum and maximum values in an array:
print (f’Min RV = {np.min(annRV)}\n’

f’Max RV = {np.max(annRV)}’)
print (f’Index of Min = {np. argmin (annRV)}\n’

f’Index of Max = {np. argmax (annRV)}’)

Numpy arrays also implement a multitude of different methods:
x = np.array ([4 ,3 ,2 ,1]);
in -place sort
x.sort ()

Page 6

Econ890-04 Python Summer 2019

print (x)
common operations
print (x.sum (), x.mean (), x.max (), x.min ())
equivalent to
print (np.sum(x), np.mean(x), np.max(x), np.min(x))
index of extremum
print (x. argmin (), x. argmax (), np. argmin (x), np. argmax (x))
cummulative sum
x. cumsum ()
cummulative product
x. cumprod ()
variance
x.var ()
x.std ()
x.std () == x.var ()**0.5
search sorted array for index where a new value can be inserted
without affecting the sort
x. searchsorted (2.5)

Numpy also implements matrix operations:
Inner Product : <a, b>
x = np.array ([1, 2, 3])
y = np.array ([-1, 0, 10])
print (np.dot(x, y))
Matrix multiplication
create identity matrix
a = np.eye (2)
b = np. random . random ((2, 2))
print (np. matmul (a, b))
The symbol @ is overloaded for matrix multiplication
print (a @ b)
print (a @ b == np. matmul (a,b))
Matrix transposition
print (np. transpose (b))
print (b.T)
Matrix inversion
c = np.array ([[1 , 2],

[3, 4]])
print (np. linalg .inv(c))

Numpy also implements other functions, like singular value decomposition (np.linalg.svd),
eigenvalues (np.linalg.eig), Moore-Penrose inverse (np.linalg.pinv), Kronecker prod-
uct (np.kron) and others. For more information on linear algebra with Numpy check the
reference page.

6 Mutability and Copying Arrays
Create a new array:

x = np.array ([4 ,3 ,2 ,1] , dtype=’float_ ’)
arrays are mutable

Page 7

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

Econ890-04 Python Summer 2019

x[0] = 10.32
print (x)

What happens when we assign a new name to x?
a = x
a[1] = -2.34
What is printed ?
print (a, a[1], x[1])

Notice that x is a name to an array, and a is a reference to x. Thus, a is also a name to
the exact same array.

a == x
a is x

This is a sensible behavior for memory efficiency. If you do need to make a copy of an
array, then:

print (x)
a = np.copy(a) # deep copy
print (a)
np.all(a == x)
a is x
a[:] = np.pi
print (a, x)

We can check if all elements of an array are True:
(a == x). all ()
np.all(a==x)
built in
all(a == x)

7 Additional Functionality
Numpy has several functions that can be applied element-wise:

x = np.array ([1, 2, 3, 4])
vectorized functions (element -wise)
print (np.sin(x)) # implicit type conversion
print (np.log(x), np.exp(x))

These functions are referred to as universal functions (ufunc). They are universal in the
sense that they work with arrays (work with many elements).

We can compose these operations:
+, -, /, * and ** also work element -wise
print (np.log(x + 1)*3/ np.exp(x)**2)

If a function is not universal (also known as vectorized), applying it on an array will
lead to error:

def f(x):
return 1 if x > 0 else 0

f(x)

Page 8

Econ890-04 Python Summer 2019

The issue here is that bool(x) is not defined for numpy arrays. While x > 0 works,
the part that says if x > 0 is equivalent to if bool(x > 0), which is undefined for
arrays.

bool(x)
Remember that for Python lists bool is always defined
bool(list(x))

We can vectorize a function:
f = np. vectorize (f)
f(x)

The function np.vectorize is basically creating a for-loop around f:
res = np.zeros(len(x))
for i in np. arange (len(x)):

res[i] = f(x[i])
print (res)

We can accomplish the result of the function f using np.where:
help(np.where)
returns 1s where x > 0, and 0 otherwise
np.where(x > 0, 1, 0)

Remember that comparisons are element-wise and can be used for slicing:
comparisons are element -wise
a = np.array ([-1, 0, 1])
b = np.array ([1.2 , -2.3, 3])
a > b # implicit type conversion for a
a > 0.2
slice based on comparisons
a[a > 0.2]
a[a > b]

The Numpy subpackage np.random implements several random number generators.
You can get more information about them with help:

help(np. random)

The Numpy subpackage np.linalg has other linear algebra tools. You can also use
help to learn more about them:

numpy subpackage np. linalg implements linear algebra functions
help(np. linalg)

A table that compares commands in Matlab to commands in Numpy is available here.
A good overview of many numpy features is available here.

8 Implementing the OLS Estimator for Linear Re-
gressions

We now know everything we need to know about Python to estimate parameters in a
linear regression:

Page 9

https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy/user/quickstart.html#quickstart-tutorial

Econ890-04 Python Summer 2019

def linreg_ols (x, y):
assert x.shape [0] == y.shape [0], " Different number of rows"
beta = np. linalg .inv(x.T @ x) @ x.T @ y
return beta

Generate some test data to test linreg_ols:
1000 data points with a constant + 3 explanatory variables
x = np. hstack ((np.ones ((1000 , 1)), np. random . random ((1000 , 3))))
print (x)
beta = np. random . random ((4, 1))
epsilon = np. random . random ((1000 , 1))
y = x @ beta + epsilon
print (y)

Estimate beta and compare the estimate to the true value:
beta_hat = linreg_ols (x, y)
print (np. hstack ((beta , beta_hat)))

Let’s update linreg_ols so that adding a constant to x is automatic:
def linreg_ols (x, y):

assert x.shape [0] == y.shape [0], " Different number of rows"
x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y
return beta

Test it again:
x = x[:, 1:]
print (x)
print (x.shape , y.shape)
beta_hat = linreg_ols (x, y)
print (beta_hat)

Update linreg_ols so that adding a constant can be optionally specified by the user:
def linreg_ols (x, y, intercept =True):

assert x.shape [0] == y.shape [0], " Different number of rows"
if intercept :

x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y
return beta

if no intercept is supplied , than a column of ones is added
print (linreg_ols (x, y))
print (linreg_ols (x, y, True))
print (linreg_ols (x, y, 1))
print (linreg_ols (x, y, False))

Always remember to add documentation to your functions (your future self will thank
you):

def linreg_ols (x, y, intercept =True):
""" Estimates linear regression coefficients with OLS.

Page 10

Econ890-04 Python Summer 2019

Estimates beta in a linear regression : y = x @ beta + epsilon .
Uses the ordinary least squares estimator .

Args:
x (np.array): A nxK matrix of explanatory variables
y (np.array): A nx1 matrix of dependent variables
intercept (bool): Specifies whether to estimate intercept coefficient

Returns :
beta (np.array): A Kx1 vector with the beta estimates

Raises :
AssertionError : x and y have different number of rows
LinAlgError : if x is a singular matrix

Example :
linreg_ols (np.array ([[1 , -2], [0.5 , -3.1]]) , np.array ([1, 2.3]))

"""
assert x.shape [0] == y.shape [0], " Different number of rows"
if intercept :

x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y
return beta

help(linreg_ols)

9 Save and Load Results
After running linear regressions, we might want to save the results. We can use np.save
for that. It saves the results in a file for later use. The function np.save saves in a binary
file, which is faster for loading compared to .csv files (but it is not human-readable).

beta = linreg_ols (np. random . random ((1000 , 3)),
np. random . random ((1000 , 1)))

print (beta)

help(np.save)
np.save(’ regression_estimates ’, beta , allow_pickle = False) # npy extension

If you are only using the data only on your computer (not sharing), then you can set
allow_pickle=True to speed things up.

To load the data, use np.load:
load the data
del beta
print (beta) # not defined
beta = np.load(’ regression_estimates .npy ’, allow_pickle = False)
print (beta)

We can save the results in a .csv file, which is easier to share and inspect. To do so,
we use np.savetxt:

Page 11

Econ890-04 Python Summer 2019

np. savetxt (’ regression_estimates .csv ’, beta , delimiter =’,’)
load from .csv
del beta
print (beta)
beta = np. loadtxt (’ regression_estimates .csv ’, delimiter =’,’)
print (beta)

We can also use np.loadtxt to load data created outside Python. Download this data
set on housing prices in California, and save the file in your working folder. The data
contains information on household prices in California in 1990 (based on the census at
that time).

Look at the data file to understand it first. Skip first line since they are the headers.
Ignore the last column since it is string data. So, we need to select all but the last column.

A missing value in a .csv file is represented as „. The value would be considered as
an empty string (”) by Numpy. The file has some missing data, so we also need to deal
with it.

Load the data:
data = np. loadtxt (’ housing .csv ’, delimiter =",",

skiprows =0, usecols =range (9),
converters ={4: lambda x: 0.})

delimiter : to specify its a csv file
skiprows : skips the first row , which has headlines
usecols : to select first 9 columns
converters : apply the anonymous functions to all strings it encounters
thus , transforming ’’ into a 0.0
print (data.shape)
print (data)

The function np.loadtxt is useful for files that are well formated and do not require
much work. Later we will learn another package that implements a database object and
provides much more powerful loading functions.

10 Organizing Outputs
Let’s extend linregols so the R-squared is also computed:

def linreg_ols (x, y, intercept =True):
assert x.shape [0] == y.shape [0], " Different number of rows"
if intercept :

x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y
residuals
e = y - x @ beta
rsquared = 1 - (np.sum(e**2)/ np.sum ((y-y.mean ())**2))
return (beta , rsquared)

we are returning a tuple , where the first element are the estimated
betas , and the second element is the R- squared
x = np. random . random ((1000 , 5))
y = np. random . random ((1000 , 1))

Page 12

https://raw.githubusercontent.com/Salompas/handson-ml/master/datasets/housing/housing.csv
https://raw.githubusercontent.com/Salompas/handson-ml/master/datasets/housing/housing.csv

Econ890-04 Python Summer 2019

results = linreg_ols (x, y)
print (results)
print (results [0], results [1])
tuple unpacking (a.k.a. unpacking):
beta , rsquared = results
beta , rsquared = linreg_ols (x, y)

As we start adding more outputs to a function, it can become harder to identify what
is each output represents. We can organize the outputs by using a dictionary:

def linreg_ols (x, y, intercept =True):
assert x.shape [0] == y.shape [0], " Different number of rows"
if intercept :

x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y
residuals
e = y - x @ beta
rsquared = 1 - (np.sum(e**2)/ np.sum ((y-y.mean ())**2))
return {’beta ’: beta , ’r2 ’: rsquared }

results = linreg_ols (x, y)
Check what are the outputs :
print (results .keys ())
Assign variable names
beta = results [’beta ’]
rsquared = results [’r2 ’]
A dictionary can also be unpacked :
beta , rsquared = results . values ()
print (beta , rsquared)

We can also organize the output using a namedtuple. A namedtuple is similar to a
tuple, but its elements have names. And the elements of a namedtuple can be accessed
with the . notation:

The namedtuple is defined in the collections package, which is built-in Python.
The namedtuple is a factory function, which returns a subclass. A subclass is what
defines an object, it is just a definition. But, we can use it to create instances of the
object, which can actually be used. namedtuple takes the name of the object as an
input, and also a list of properties that the object will have.

from collections import namedtuple

Point = namedtuple (’Point ’, [’x’, ’y ’])
mouse = Point (0.3 , 0.7)
print (mouse.x)
print (mouse.y)

We can adapt the example above to organize the output of linreg_ols:
def linreg_ols (x, y, intercept =True):

assert x.shape [0] == y.shape [0], " Different number of rows"
if intercept :

x = np. hstack ((np.ones ((x.shape [0], 1)), x))
beta = np. linalg .inv(x.T @ x) @ x.T @ y

Page 13

Econ890-04 Python Summer 2019

residuals
e = y - x @ beta
rsquared = 1 - (np.sum(e**2)/ np.sum ((y-y.mean ())**2))
RegressionOutput = namedtuple (’ RegressionOutput ’, [’beta ’, ’rsquared ’])
return RegressionOutput (beta , rsquared)

results = linreg_ols (x, y)
Check what are the field names:
print (results . _fields)
Recover the values
print (results .beta)
print (results . rsquared)

This is a more efficient way of providing results, since you can name the outputs. Also,
the outputs are saved in a tuple, which is immutable and so is slightly more memory
efficient.

11 Assignment
All assignments should be submitted to the Github repository you have been assigned
to. The deadline is August 12th by 11 PM. You should write a report in Latex with
the solutions to the problems below. If the problem requires you to code, then the code
should also be included in the report. You can add code to Latex with the lstlisting
package (see this stack post) or the minted package (see this other stack post).

Problem 1 Read the numpy.random documentation page. Test the linear regression
function using a normal distribution for the unobserved heterogeneity and some other
distribution of your choice for the independent variables.

Problem 2 Extend linreg_ols to compute the standard error of the OLS estimates
under the classical assumptions. Remember that under the classical assumptions, the
standard error of the OLS estimates:

SE(β̂i) =
√
s2 · [(X ′X)−1][i,i]

where s2 is computed from the residuals of the estimation:

e ≡ y −Xβ̂

s2 ≡ e′e

n−K

Remember to update the output of the function and extend its documentation.

Problem 3 Download this data set on housing prices in California, and save the file in
your working folder. This data set was first used in Pace and Barry (1997), and was later
modified for use in Géron (2017). The data contains information on household prices in
California in 1990 (based on the census at that time). The first line of the file contains
the name of the explanatory variables. Run the linear regression suggested in Equation
(8) of Pace and Barry (1997).

Page 14

http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
https://tex.stackexchange.com/a/83883/65818
http://tug.ctan.org/tex-archive/macros/latex/contrib/minted/minted.pdf
https://stackoverflow.com/a/1985330/1445572
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://raw.githubusercontent.com/Salompas/handson-ml/master/datasets/housing/housing.csv

Econ890-04 Python Summer 2019

Problem 4 Python has been around since 1990 and has a huge number of packages.
Figure out if Python has a function or a package (or many packages) for estimating the
parameters of a linear regression using OLS. If it does, what is the name of the function
or the package? What are the outputs of the function you found?

Problem 5 When the classical assumption of homoskedasticity fails, we need a differ-
ent estimators for the standard errors of the OLS estimates. White (1980) proposes a
heteroskedasticity-robust estimator for the standard errors of the OLS estimates, which is
now known as White’s standard error. Equation 2.4.1 in Hayashi (2000) shows White’s
standard error:

ŜE(β̂i) ≡
√

1
n

[S−1
xx ŜS

−1
xx][i,i]

There is a slight change of notation in this part of the Hayashi (2000), and x′i is the
ith row of X (xi is a column vector with the explanatory variables in the ith row of X).
The term Sxx is the sample mean of xix

′
i: Sxx = 1

n

∑n
i=1 xix

′
i (Equation 2.3.6 in Hayashi

(2000)). The term Ŝ is an estimator for a matrix of fourth moments, and it is defined as
Ŝ = 1

n

∑n
i=1 e

2
ixix

′
i (Equation 2.5.1 in Hayashi (2000)), and ei is as before (residual for

the ith observation). Implement this estimator in the linreg_ols function. You could
write a local function to estimate White’s standard error in the linreg_ols.m file.

Problem 6 (Optional)
Implement the t-test based on White’s standard error. Also, compute the p-value from

given the statistic.

Problem 7 Newey and West (1987) proposes another estimator to the standard errors
for the OLS estimates under weaker assumptions. The estimator the authors propose
is robust not only to heteroskedasticity, but also autocorrelation, and is known as the
HAC standard errors. Does the package you found in Problem 4 have such a function
to compute the HAC standard errors? If not, can you find some other package that does
have it? If so, what is the name of the package?

Problem 8 (Optional)
Implement the t-test based on the HAC standard error. Also, compute the p-value

from given the statistic.

Problem 9 Extend linreg_ols to accept an optional input named cov_type, which
specifies the type of standard errors estimator to report. The variable cov_type can take
one of many values, say "Standard", "White" or "HAC". Your function should be able
to check if cov_type is one of those types and act accordingly. If it is not, the function
should raise an appropriate error alerting the user with a very clear message of what is
wrong.

Page 15

https://en.wikipedia.org/wiki/Python_(programming_language)
https://pypi.org

Econ890-04 Python Summer 2019

References
Géron, Aurélien (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc.".
url: https://isbnsearch.org/isbn/9781491962299.

Hayashi, F. (2000). Econometrics. Princeton University Press. isbn: 9780691010182. url:
https://books.google.com/books?id=QyIW8WUIyzcC.

Newey, Whitney K. and Kenneth D. West (1987). “A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix”. In: Econometrica
55.3, p. 703. url: https://login.proxy.lib.duke.edu/login?url=https:
//search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=
10598.

Pace, R Kelley and Ronald Barry (1997). “Sparse spatial autoregressions”. In: Statistics
& Probability Letters 33.3, pp. 291–297. url: https://doi.org/10.1016/S0167-
7152(96)00140-X.

White, Halbert (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity”. In: Econometrica 48.4, pp. 817–838. url: https:
//www.jstor.org/stable/1912934.

Page 16

https://isbnsearch.org/isbn/9781491962299
https://books.google.com/books?id=QyIW8WUIyzcC
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1016/S0167-7152(96)00140-X
https://www.jstor.org/stable/1912934
https://www.jstor.org/stable/1912934

	Install
	Basics
	Data Types
	Empty and Pre-Filled Arrays
	Operations
	Mutability and Copying Arrays
	Additional Functionality
	Implementing the OLS Estimator for Linear Regressions
	Save and Load Results
	Organizing Outputs
	Assignment

