
Econ890-04 Python Guilherme Salomé

Python Basics

This lecture covers the core of the Python language, introducing the main concepts of
the language and providing a comprehensive set of tools that can be used to solve several
fundamental problems.

1 Interacting with Python
There are two ways to execute Python scripts. First, you write a .py file and run it in a
terminal with python3 myfile.py. Second, you execute the Python commands line by
line in the Python REPL (read-eval-print-loop). To open the Python REPL simply type
python3 in the terminal. You can quit Python by running exit() or with Control-D. In
the Jupyter notebook you are interacting with a REPL, each cell you execute sends the
commands to the interpreter, which then executes and prints outputs and then waits for
more commands.

2 Built-In Data Types
The main data types that are built-in Python are:

• Numerics: hold different types of numbers (integers, floats and complex numbers);

• Text: hold characters and strings (string);

• Boolean: used to test conditions (bool, True, False);

• Sequences: list of elements where order matters (list, tuple and range);

• Sets: list of distinct objects where order is not important (set, frozenset);

• Mapping: maps keys to values (dictionary, dict);

• Objects: represents all data in Python (class)

• Exceptions: represents errors in Python

All of the built-in types are fully described here. We will cover most of them. There are
also many built-in functions, which are described here, and we will cover some of them
as we go.

Page 1

https://docs.python.org/3.6/library/stdtypes.html
https://docs.python.org/3.6/library/functions.html

Econ890-04 Python Summer 2019

2.1 Numerical Data
Numbers are separated into three different types: int, float and complex. Integers can
be as big as required, as long as you have free memory available.

Variables in python are not strongly typed. This means the type of the variable is
inferred at the time of declaration from its context. Thus, when creating numerical data,
the type of variable will be inferred from its definition.

integer
x = 3005
big integer
y = 1000
z = 10**30000

We can print these numbers on the screen by typing the name of the variable, like x,
or by using the function print.

print the value of the variables on the screen
x
y
z
alternatively use print
print (x)
can print multiple variables
print (x, y, z)

We can check the size of these integers (in bytes) with a helper function from the
sys module (more on modules later), named getsizeof. We use functions inside a
module using the dot notation: module_name.name_of_function. For example, to use
getsizeof we call sys.getsizeof.

import module sys
import sys
print size of the integer stored in x
print (sys. getsizeof (x))
print size of the large integers
print (sys. getsizeof (y), sys. getsizeof (z))

The number of bytes assigned to the variable changes as the integer increases.
Floating point numbers have a different implementation that varies by operating sys-

tem, but usually is equivalent to a double type in C (8 bytes). To create a float:
floating point numbers : floats
a = 3.1415
b = 2.718281828

To create complex numbers we use j:
complex numbers
c = 2+3j
d = 1j
print (c, d)

Complex numbers have properties that can be accessed using the dot notation, just like
we accessed the function getsizeof from the module sys.

Page 2

https://docs.python.org/3.6/library/functions.html#print
https://docs.python.org/3.6/library/sys.html?module-sys#module-sys
https://docs.python.org/3.6/library/sys.html?highlight=sys#sys.getsizeof

Econ890-04 Python Summer 2019

real part of a complex number
print (c.real)
imaginary part of a complexn umber
print (c.imag)

We will not talk anymore about complex numbers and choose to focus only on integers
and floats.

The integers and floats support the usual mathematical operations.
x = 11
y = 2
Addition , subtraction , multiplication and division
print (x + y, x - y, x*y, x/y)
Integer division
print (x//y)
Remainder of integer division
print (x%y)
Absolute value
print (abs(-x-y))
Exponentiation
print (pow(x, 2))
print (x**2) # equivalent to pow

Notice the use of two built-ins: abs for absolute value and pow for exponentiation.
Some of the operations will make implicit conversions from integers to floats or the

other way around. We can check the type of a variable with the built-in function type.
x and y are integers
print (x, type(x))
print (y, type(y))
when we divide x and y, they are implicitely converted to floats
so that the result is also a float
print (x/y, type(x/y))

We can convert between integers and floats by calling the built-in functions int and
float:

z = 3.2
print (int(z), type(int(z)))
h = 22
print (float(h), type(float(h)))

These functions are useful to convert strings into numbers.

2.2 Text Data
Textual data in Python is stored in str objects. There are several ways of creating
strings:

Create strings with single quotes ’
first_name = ’Guilherme ’
or double quotes "
last_name = " Salome "
print (first_name , type(first_name), sys. getsizeof (first_name))
A string can also have quotation marks

Page 3

https://docs.python.org/3.6/library/functions.html?abs#abs
https://docs.python.org/3.6/library/functions.html?abs#pow
https://docs.python.org/3.6/library/functions.html?#type
https://docs.python.org/3.6/library/functions.html?#int
https://docs.python.org/3.6/library/functions.html?#float
https://docs.python.org/3.6/library/stdtypes.html#textseq

Econ890-04 Python Summer 2019

more_strings = ’This is a string with " quotation marks"’
print (more_strings)
To create strings with multiple lines use triple quotes ’’’
or triple double quotes """
multiple_lines = ’’’This is a string
that spans
multiple lines. They can also be created with
triple quotation marks """ """ ’’’
print(multiple_lines)

Strings have an implicit join when they are part of a single expression:
name = " Guilherme " " Salome "
complete_name = (" Guilherme " " Salome ")

Strings are a collection of characters. Think of a vector, where each element is a letter.
We can access letters in a string using the [] notation.

The first letter of a string has the index 0
we can access it with [0]
name = " Guilherme "
print (name [0])
print (name [1], name [2])
Last letter
print (name [8])
Last letter of a string can be recovered with the index -1
print (name [-1])

We can use the built-in function len to get number of letters in a string.
print (len(name))
Since index starts at 0, the last letter is at position len(name)-1
print (name[len(name) - 1])

Strings are immutable:
name = " Guilherme "
print (name [0]) # first letter of string
name [0] = ’A’ # error

We can concatenate strings with the + operator.
fname = "John"
lname = "Doe"
print (fname + lname)
print (fname + ’ ’ + lname)

Whatever is being concatenated has to have the type str, otherwise it needs to be
converted to a string by using the built-in function str:

x = 1
name = " Guilherme "
print (’ Student ’ + x + ’: ’ + name) # error since x is not a string
convert to string with str
print (’ Student ’ + str(x) + ’: ’ + name) # error since x is not a string

Strings are objects. Objects hold values, like the value of the string, but can also hold
other information, like properties and methods. We have seen an object with properties

Page 4

https://docs.python.org/3.6/library/functions.html?#len
https://docs.python.org/3.6/library/functions.html?#func-str

Econ890-04 Python Summer 2019

when we created a complex number. In that case, the complex number object had two
properties, one that held the real part of the number, and another that held the complex
part of the number. Objects can also have methods. Methods are functions which relate
to the object itself. For example, a method might use the objects value and create a new
one. In the case of strings, there is a method that takes the string in the variable and
returns a new string with all letter capitalized.

first_name = ’guilherme ’
Capitalize string
print (first_name . capitalize ())
print (first_name)
capitalized = first_name . capitalize ()
All upper case
upper_case = first_name .upper ()
print (upper_case)
All lower case
print (upper_case .lower ())

Remember that strings are immutable, so string methods all return new strings when
used. We will use other methods after we talk about sequences and booleans. A complete
list of the string methods is available here.

2.3 Boolean
There are two boolean values: True and False. The booleans are a subclass of integers,
and, in some contexts, the integers 1 and 0 represent the booleans True and False.

We can obtain booleans via comparisons. There are 8 types of comparisons in Python:
print (1 < 1)
print (1 <= 1)
print (1 > 1)
print (1 >= 1)
print (1 == 1)
print (1 != 1)
print (1 is 1) # compares if two object are the same
print (1 is not 1)

Booleans support the operations: and, or and not.
print ((1 > 0) and (2 > 1))
print ((1 > 2) or (1 < 2))
print ((1 > 2) or (0 > 1))
print (not True)

The built-in function bool can convert any value to a boolean.
print (bool (0), bool (1))
print (bool(’Guilherme ’))
print (bool ([]))

When we use the function bool Python evaluates whether the input of the function is
associated with False or True. The most common objects that will lead to a False value
are:

• Constants that are False by definition: False and None

Page 5

https://docs.python.org/3.6/library/stdtypes.html#string-methods
https://docs.python.org/3.6/library/functions.html?#bool

Econ890-04 Python Summer 2019

• Numbers that are zero: 0, 0.0, 0j

• Empty sequences: ”, (), [], {}

Other objects that are non-empty will lead to a value of True.

2.4 Sequences
Sequences define a sequence of objects where the order of the objects is kept. There are
three basic types: list, tuple, range. A list can hold any number of elements and
types of objects:

list_of_numbers = [1, 2, 3, 2.3, 3.1, -1, 0, -5]
print (list_of_numbers)
list_of_strings = [’Guilherme ’, ’Salome ’, ’HFFE ’, ’Lecture 13’]
mixed_list = [-1, False , ’Hello ’, 3.2]

Elements of the list can be accessed by index. The index of a list starts at 0.
first element at index 0
print (list_of_numbers [0])
print (list_of_numbers [1])

The built-in function len gives the length of a list:
print (len(list_of_numbers))
print (len ([]))
print (len(’HFFE ’))

Notice that a string is backed up by a list, so it shares some of its methods and returns
the number of characters when len is called on a string.

Because indices start at 0 and not at 1, the last index of a list is given by the length
of such list minus 1. The last element of a list can also be accessed via the index -1
(equivalent of Matlab’s end):

print (mixed_list [3])
print (len(mixed_list))
print (mixed_list [len(mixed_list)]) # index out of range
print (mixed_list [len(mixed_list) -1])
print (mixed_list [-1])

We can recover several elements of a list, also known as slicing, using the [] notation.
numbers = [-1, 2, 5, 7, 9, 10, 12]
recover first element
numbers [0]
recover first three numbers
numbers [0:3]
equivalent to
numbers [:3]
recover from the third number to the fifth
numbers [2:5]
recover from the 2nd number to the last
numbers [1: len(numbers)]
numbers [1:]
recover the last number

Page 6

https://docs.python.org/3.6/library/stdtypes.html#list

Econ890-04 Python Summer 2019

numbers [-1]
recover every other number
numbers [0: len(numbers):2] # start:stop:step
numbers [0::2]
recover every 3rd number
numbers [0::3]

Elements of a list can be modified:
list_of_numbers [0] = 1000
print (list_of_numbers)
list_of_numbers [-1] = ’oops ’
print (list_of_numbers)

A list can be extended:
print (list_of_numbers)
list_of_numbers . append (100) # adds to the end of list
print (list_of_numbers)
list_of_numbers . insert (0, 100) # inserts at beginning of list
print (list_of_numbers)
list_of_numbers . insert (1, 100) # inserts at position 1, shifts everythin to the right

It is important to note that adding elements to the beginning of a list or at a random
location inside the list is slow. Appending at the end of the list is much faster.

A list can be shrunk.
print (list_of_numbers)
list_of_numbers .pop () # removes last item
print (list_of_numbers)
list_of_numbers .pop (0) # removes first item (this is slow)
print (list_of_numbers)
del list_of_numbers [1] # removes element at index 1
print (list_of_numbers)

A tuple is also a sequence, but it is a sequence that cannot be modified after it is
created.

tuple_of_numbers = (1 ,2 ,3 ,4 ,5)
print (tuple_of_numbers)
print (tuple_of_numbers [0], tuple_of_numbers [-1], len(tuple_of_numbers))
tuple_of_numbers [0] = 100 # raises error
tuple_of_numbers . append (100) # raises error
tuple_of_numbers .pop () # raises error
del tuple_of_numbers [0] # raises error

Tuples are more efficient than lists since they occupy less bytes. Tuples are used when
you want to fix a sequence of values that should not be changed.

A range constructs a sequence of numbers and is often used for looping a specific
number of times in a loop.

print (list(range (0, 10)))
print (list(range (10)))
print (list(range (0, 10, 2)))

It is important to know that all functions that return a list of numbers in Python exclude
the last number from the list. For example range(5) returns a list with the numbers

Page 7

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#range

Econ890-04 Python Summer 2019

0,1,2,3,4. This is because lists start in the index 0, so the last index of a list with 5
elements is the index 4. This contrasts with lists in Matlab which start at index 1, but
is a small change that is more natural to programming and is the default in most of the
programming languages.

2.5 Sets
A set is a list of distinct objects without a specific order (unordered collection). To
create a set we pass a list of elements to the set function:

students = set ([’A’, ’B’, ’C’, ’D ’])
print (students)
{’A’, ’B’, ’C’, ’D’} # also creates the same set
set () # empty set
{} # NOT an empty set , but an empty dictionary
print (type(set ()), type ({}))

Notice that the elements in a set are all unique. Indeed, set is an implementation of
a mathematical set:

print ({’A’, ’A’, ’A’, ’B’, ’B’, ’C ’})

A set can be extended and its elements can be removed:
print (students)
students .add(’E’)
print (students) # notice the order of elements might change
students . discard (’A’) # removes ’A’ if it is in the set
students . discard (’A’) # if not in the set , do nothing
students . remove (’B’) # removes ’B’ it it is in the set
students . remove (’B’) # if not in the set , raise error

We can find how many elements are in a set with len.
print (len(students))

As the implementation of a mathematical set, we can take unions, intersections and
differences. We can also check if an element is in a set.

students = {’A’, ’B’, ’C’, ’D’, ’E’}
teacher = {’G’}
assistant = {’I’}
everyone = students .union(teacher , assistant) # new set that is union of all
everyone_but_A = students . difference ({’A ’})
print ({’A’, ’B’, ’C ’}. intersection ({’B’, ’C ’}))
print (’A’ in students)

Other operations are described here.
A frozenset is similar to a set but is an immutable collection.

students = frozenset ([’A’, ’B’, ’C’, ’D’, ’E ’])
can do everything a set does , but cannot be modified
students .add(’F’) # error

A frozenset is useful when you want to name a set of values that will have some use in
your program. This makes your code more readable and easier to identify key parameters.

Page 8

https://docs.python.org/3.6/library/stdtypes.html#set
https://docs.python.org/3.6/library/stdtypes.html#set
https://docs.python.org/3.6/library/stdtypes.html#frozenset

Econ890-04 Python Summer 2019

2.6 Mapping (Dictionaries)
A mapping is an object that associates names (keys) to values (any object). The standard
implementation of a mapping in Python is a dictionary: dict. A dictionary can be created
by giving the dict constructor a list of key:value pairs:

grades = {’A’: 10, ’B’: 8, ’C’: 7, ’D’: 8.5, ’E’: 9.8}
print (type(grades))
print (len(grades))
grades [’A’] # returns value for grade of A
grades [’C’] = 7.5
print (grades)

Dictionaries can be modified, its elements can be removed, new elements can be added,
and existing elements can be updated.

print (grades)
grades . update ({’A’: 0}) # A was cheating
print (grades)
del grades [’B’] # remove grade for B
print (grades)
grades [’F’] = 10 # adds a new pair to the dictionary
print (grades)

We can recover (as a list) all of the keys of a dictionary, all of its values, and all of
the key:value pairs:

list(grades .keys ()) # a list of all dict keys
list(grades . values ()) # a list of all dict values
list(grades .items ()) # a list of the key:value pairs

Other methods are described here.

2.7 Objects
Objects are the core of everything in Python. In fact, every data in Python is represented
by an object. All of the basic types we studied so far are objects. That is why when we
call type(1), for example, we get back <class ’int’>. This means the number 1 is an
object of the class int.

Every object in Python has: an identity, a type and a value. This means every single
variable we declare in our scripts will have an identity, a type and a value, since everything
in Python is an object, no exceptions.

The identity of an object is a value that never changes after it was created, it is like the
address of an object in the computer’s memory. The comparison operator is compares
the identity of two objects.

a = []
b = []
print (a == b) # the lists have the same values
print (a is b) # but they are not the same objects
a. append (1)
b. append (1)
print (a == b) # both lists have the same values , a 1
but the 1 that lives in a is not the same that lives in b
I can change the value of b[0] and it does not affect a[0]

Page 9

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

Econ890-04 Python Summer 2019

print (a is b)

We can get the identity of an object with id function (a function is also an object in
Python):

print (" Identity of ’a’: " + str(id(a))) # id returns an integer representing a’s identity
print (" Identity of ’b’: " + str(id(b))) # id returns an integer representing a’s identity

The type of an object determines what functions it supports, it represents the object’s
definition. The type of an object cannot be changed. As we have seen before, we can
discover the type of an object with the type function.

print (type(a))
print (type(type)) # type is an object , and has a type

The value of an object may be mutable or immutable, like lists and tuples.
The built-in functions dir and help can be used to inspect the methods of an object,

and to get help on those methods:
a = [1, 2, 3]
print (type(a)) # a is a list
print (dir(a)) # these are all of its methods
we can understand each method by using the help function
help(a. reverse)
help(a.sort)

For now we will skip the topic of how to define new objects, but we will talk about it
after we cover loops, conditionals and functions.

2.8 Exceptions
Exceptions are objects that hold the information about errors that occur in Python during
the run-time of a script. There are many built-in exceptions that are raised depending
on the situation. For example, trying to access an element of a list with an index that is
not correct will raise an IndexError:

students = [’A’, ’B’, ’C’]
students [4]

For example, trying to access a value stored in a dictionary with a non-existing key
will raise a KeyError:

grades = {’A’: 10, ’B’: 8}
grades [’C’]

For example, calling a method on an object that does not actually have that method
will raise an AttributeError:

students = {’A’, ’B’, ’C’, ’D’, ’E’}
students . append (’F’) # there is no append method in a set

A complete list of the exceptions that are built-in Python is available here.
The philosophy of programming in Python when it comes to dealing with errors is

known as EAFP: Easier to Ask for Forgiveness than Permission. It means that when we are
coding, we should assume that the values/methods exist and try to do the computations,
but if something fails, then we will fix it. This is opposed to the style known as LBYL:
Look Before You Leap. Where you check if everything is as should be before doing the

Page 10

https://docs.python.org/3.6/library/functions.html?#id
https://docs.python.org/3.6/library/functions.html?#dir
https://docs.python.org/3.6/library/functions.html?#help
https://docs.python.org/3.6/library/exceptions.html?highlight=indexerror#IndexError
https://docs.python.org/3.6/library/exceptions.html?#KeyError
https://docs.python.org/3.6/library/exceptions.html?#AttributeError
https://docs.python.org/3.6/library/exceptions.html#concrete-exceptions

Econ890-04 Python Summer 2019

computations. This distinction is just a philosophical one, and, in the case of Python,
the EAFP increases the speed of developing software.

In a LYBL style of coding we would write software as such:
if is_everything_right_for_computing ():

if everything is right (variables have the values we expect , ...)
do_the_computations ()

else:
handle_the_error_case ()

In a EAFP style of coding we would write the same software as:
try:

do_the_computations ()
except SomeErrorHappened :

handle_the_error_case ()

The EAFP approach is what we will use when handling errors.
Handling errors is an extremely important topic, but requires understanding condi-

tionals, so we will defer studying exceptions to a later section.

3 Control Flow Tools
Control flow refers to the tools we have available to control the execution of our script:
conditionals (if, else, elif), loops (while, for) and functions.

3.1 Conditionals
The syntax for if statements is:

if condition :
if condition evaluates to True
run code in here

else:
if condition is False
run code in here instead

Notice the use of a colon after the condition and after the else keyword. Also observe
that we have indented the expressions after the if and else keywords. Contrary to
other languages that use brackets or the end keyword to delimit a scope, Python uses
indentation. The indentation indicates what is inside the if block and what is not.
Finally, notice that semicolons are not required by Python, you can still use them but
they are not required, instead Python uses linebreaks to find the end of the command.

The condition that comes after the if keyword is an expression that evaluates to a
boolean. If that is true, then the indented code after if is executed. If the expression
evaluates to false, then the indented code after else is executed.

For example:
value = 100
if value < 100:

print (’Value is smaller than 100 ’)
else:

print (’Value is at least 100 ’)

Page 11

https://docs.python.org/3.6/tutorial/controlflow.html#if-statements

Econ890-04 Python Summer 2019

We can also have an if without an else or an elif:
say_hi = True
if say_hi :

print ("Hi !")

We can test multiple conditions:
name = ’Guilherme ’
if name. startswith (’A ’):

print (’ Starts with letter A’)
elif name. startswith (’B ’):

print (’ Starts with letter B’)
else:

print (’ Starts with some other letter ’)

If the first two conditions are not executed then the last condition (the default) is. Notice
the use of the str method startswith to check whether the first letter of the string name
matches some other letter.

It is possible to use several elif to test more conditions.
if x < -1:

doSomething
elif x >= -1 and x <= 1:

doSomethingElse
elif x > 2 and x != 3:

doYetAnotherThing
else:

x == 3
doOtherThing

3.2 Loops
In Python, we can write loops with while and for.

A while loop evaluates an expression, and, if it is True, a block of is executed and the
loop repeats. The syntax for a while is:

while condition :
if the condition is true
do something here

The code inside the while loop will be executed as long as the condition evaluates to
True.

For example:
total = 10
i = 0
print (" Beginning while loop :")
while i < total:

i += 1 # equivalent to i = i + 1
print (i)

A for loop can be written as:
for i in iterator :

do something here

Page 12

https://docs.python.org/3.6/library/stdtypes.html?#str.startswith
https://docs.python.org/3.6/tutorial/introduction.html#first-steps-towards-programming
https://docs.python.org/3.6/tutorial/controlflow.html#for-statements

Econ890-04 Python Summer 2019

A for loop iterates the variable i over the values in iterator. For each value i takes,
the code block is executed.

For example:
students = [’A’, ’B’, ’C’, ’D’, ’E’]
for i in [0, 1, 2, 3, 4]:

print (students [i])

Remember that we have two built-in functions that can help here. The function range
can create a list of numbers like the one in the for loop above. And the function len
returns the length of an object. So:

students = [’A’, ’B’, ’C’, ’D’, ’E’]
for i in range(len(students)):

print (students [i])

For loops in Python really behave like a "for-each" loop. We can iterate over the
elements of students directly, without the need to use an index.

students = [’A’, ’B’, ’C’, ’D’, ’E’]
for name in students :

print (name)

The container with the students takes care of giving out each of the elements without
explicitly tracking the index of elements. If the container (in this case a list) is ordered,
then the elements will be processed in the same order. If the container is not ordered,
like in a set, then the loop would process each elements in an arbitrary order, but all of
the elements would be processed.

If you really need to access the indices then you can use the built-in function enumerate
to iterate over the indices and the student names at the same time:

for i, name in enumerate (students):
print (’ students [’ + str(i) + ’]=’ + name)

The iterator enumerate(students) returns more than one value (it returns two values
at each iteration). In general, iterators can return a tuple with any number of values,
and these values are unpacked in the for-loop. In this case, the enumerate(students)
returns a tuple with two elements, the first is an integer representing the index (starting
at 0), and the second is one of the elements of the students list. These two values are
unpacked, the first one is assigned to the variable i, and the second is assigned to the
variable name.

We can iterate over keys and values of a dictionary. To do so, we use the items
method of dictionaries:

studentsGrades = {’A’: 10, ’B’: 9, ’C’: 9.5, ’D’: 8}
dir(grades)
help(grades .items)
for name , grade in studentsGrades .items ():

print (f"{ name}’s grade was {grade }")

In some other languages a for-loop is written with the following syntax:
for (int i = a; i < n; i += s) {
do stuff here
}

This type of loop can be written in Python using the function range:

Page 13

https://docs.python.org/3.6/library/functions.html#enumerate
https://docs.python.org/3.6/library/stdtypes.html?highlight=dict.items#dict.items

Econ890-04 Python Summer 2019

for i in range(a, n, s):
do things here

The function range(a, n, s) will create a list of numbers starting at the value a, stops
before the value n, and has a step size s.

3.3 Break and Else Statements in For Loops
The break keyword can be used inside a loop (either for or while) to break out of it.
Specifically, the break keyword breaks out of the most inner loop.

for i in range (10):
if i == 5:

break
print (i)

Another example:
j = 0
while True:

for i in range (1000):
print (i, j)
if i == 5:

break
j += 1
if j == 2:

break

Loops also have an else clause that is executed after the loop finishes (after the
iterator is exhausted) and only if the loop finishes without the use of a break.

checkIfPrime = range (3, 10) # what number is prime from 3 to 9
for number in checkIfPrime :

for divisor in range (2, number):
if number % divisor == 0: # number can be written as a*b with a,b < number

print (f’{ number } is not prime ’)
print (f’{ number }={ divisor }*{ number // divisor }’)
break

else:
no break occurred , this means no divisor was found
print (f’{ number } is prime !’)

Notice that the else clause does not belong to the if, but actually to the for, the
indentations are different.

3.4 Functions
Functions can be defined with the def keyword and there is no need to specify the type of
the return (remember values in Python are inferred when they are assigned). The body
of the function starts in the next line and must be indented.

def writeFibonacciSeries (n):
"""
Writes a list of the first n numbers from the Fibonacci series .

Page 14

https://docs.python.org/3.6/tutorial/controlflow.html?#break-and-continue-statements-and-else-clauses-on-loops

Econ890-04 Python Summer 2019

Input:
n: integer , number of elements to obtain from the Fibonacci series

n >= 2

Output :
series : list of integers

"""
series = [1, 1] # first 2 numbers of the series
total = 0
while total < n - 2:

series . append (sum(series [-2:]))
total += 1

return series

After the def keyword comes the name of the function, and then parentheses (). Inside
the parentheses are the name of the variables, if any, and then comes a colon.

The body of a functin starts with its documentation string (docstring). The triple
quotes define a multi-line comment and it is a good practice to add the definition of the
function, or at least what it is supposed to do and output.

We can execute this code cell so that the function writeFobinacciSeries is available
for use. We can now call this function:

writeFibonacciSeries (10)

Notice that calling the function help on or just defined function will output its doc-
umentation:

help(writeFibonacciSeries)

The body of the function defines a local scope. Any variables that are assigned in the
body of the function first refer to the local scope, and then to the global scope.

message = "Hello World"
def sayHello ():

message = "Hello World !!!!"
print (message)

print (message) # prints Hello World , not Hello World !!!!

The variable message is first defined outside the function, it is a global variable. Inside
the sayHello function we define a variable with the same name, it is a local variable and
does not overwrite the global variable with the same name. This becomes clear when we
print the value of message outside of the function.

Notice that the sayHello function has no return keyword and does not return any
value. A function that has no return keyword implicitly returns a value of None. That
is, Python impicitly appends a return None to the function that has no return value.
The body of the function ends when the indentation ends, so there is no need to use
brackets or an end keyword. When the value of None is the only one to be returned by
a function, the REPL suppress printing it on the screen.

sayHello () # does not print the return value
print (sayHello ()) # prints the return value , which is None
a = sayHello ()
a == None # True

Page 15

Econ890-04 Python Summer 2019

3.4.1 Functions are Objects, like everything else

Functions are first-class objects, which means they are treated the same as any other
object in the language. Remember, everything in Python is an object. Functions can
be created, destroyed (this is done automatically by Python), passed to other functions,
assigned to a variable, returned from another function.

type(sayHello)
print (sayHello) # prints info , address of function in memory
a = sayHello
print (a) # same address
the variable a points to the same function
id(a) == id(sayHello)

When a function is defined and loaded by the Python interpreter it is assigned some space
in memory. When we ran the code that defined sayHello, the function is created and
assigned some space in memoy. The name sayHello then points to that space in memory.
When we assign it to the variable a, then a starts pointing at the same space in memory.
We can in fact delete the name sayHello and the function will still be accessible via the
name a:

del sayHello
print (sayHello) # name not defined
print (a) # the function lives!
a()

We can pass functions as inputs to other functions, and even return a function from
another function:

def greetingFactory (name):
def greet ():

print (f"Welcome , {name }!")
return greet

The function defined above takes a name as an argument, and creates a function
that prints a message using the name. It then returns the newly defined function. This
function that was returned remembers the value of name that was used in its construction,
this is called a ’closure’. A closure is a function that remembers the values of the variables
in the enclosing scope (the scope of greetingFactory).

name = ’Guilherme ’
greetMyself = greetingFactory (name)
greetMyself ()
greetingFactory (’Doe ’)()

3.4.2 Default Values

Functions can take arguments with default values! (This is not the case in Matlab, where
default values is not straightforward)

def installVirus (prompt , retries =4, reminder =’ Please try again !’):
while True:

response = input(prompt) # asks user for input
if response in (’y’, ’Y’, ’yes ’, ’Yes ’):

return True

Page 16

Econ890-04 Python Summer 2019

if response in (’n’, ’N’, ’no ’, ’No ’):
return False

retries = retries - 1 # retries starts at 4 by default
if retries <= 0:

break
print (reminder)

Notice the use of the membership operator in to check whether the response variable is
a member of a set.

This function can be called in several different ways:
installVirus (’Do you want to Install this software ?’)
installVirus (’ Install ?’, 1)
installVirus (’ Delete your computer ?’, 10, ’Try again !’)

You can even specify which variable you are assigning the value to by using name and
value pairs:

installVirus (’ Delete file?’, reminder =’Did not work , try again .’)

You can use other variables to hold the default values for inputs in a function. How-
ever, the default values are captured (evaluated) when the function is first defined. That
is, even if the value of the variable changes, the default value will not change:

i = 10
def f(arg=i):

print (arg)
i = 20
f() # prints 10

The inputs of a function are positional: the order they are defined in the function
definition is the order in which they should be received. However, is possible to change
the order by specifying the name of the input. In this case, we pass name=value pair,
also known as keyword arguments. For example:

def foo(x, y=0, z=0):
print (x, y, z)

x is a positional input , it has no default value so must always be supplied
foo () # error
missing a positional argument
foo (1)
y and z are keyword arguments
we can pass them as positional arguments
foo (1, 10, 20)
or by specifying name=value pairs
foo (1, y=10, z=20)
when specifying name=value pairs the order can be changed
foo (1, z=20, y=10)
but positional arguments must always come first
foo(z=20, y=10, 1) # error

3.4.3 Functions with *args and **kwargs

You will often find functions where some of its inputs are called *args and **kwards:

Page 17

https://docs.python.org/3.6/reference/expressions.html#membership-test-operations

Econ890-04 Python Summer 2019

def myFunction (variable1 , *args , ** kwargs):
pass

Here the variable1 is just the first argument that the function receives, it is named
’variable1’ and is available for use within the function body. The keywords *args and
**kwargs allow the function to accept optional arguments, as many as you want. Thus,
the function above requires at least one argument, called "variable1", and can accept
extra arguments.

The keyword *args collects additional positional arguments, that is, arguments that
do not have a keyword associated with them. These arguments are collected into a tuple
with the name ’args’.

def f(a, *args):
print (a)
print (args)

f(1, 2, 3, 4, 5, 6, range (10))

The keyword **kwargs collects values that are associated with names. These names
and values are collected into a dictionary, which is available in the function body via the
name ’kwargs’:

def f(a, *args , ** kwargs):
print (a)
print (args)
print (kwargs)

f(1, 1, 2, 3, range (10) , name=’Guilherme ’, lastname =’Salome ’, age =’29’)

If no extra arguments are passed, then "args" and "kwargs" will be empty:
f(1)

3.4.4 Anonymous Functions: lambdas

We can declare short inline functions using the lambda keyword.
add = lambda x, y: x + y

After the keyword lambda comes the arguments, in this case x and y. After the colon
comes whatever the function will return, in this case x+y. The function here is assigned
to the name ’add’.

Lambdas are useful in some contexts. Suppose we have a list that we want to sort:
grades = [(’A’, 9), (’B’, 10), (’C’, 7), (’D’, 9.5)]
dir(grades)
help(grades .sort)

The list method sort sorts a list in place. It takes an optional argument called key.
This argument is a function that takes an element of the list and returns a value. The
value that is returned is used for sorting the list.

print (grades)
grades .sort ()
print (grades)

Notice that the tuples inside this list were sorted by their first value, a string. We can
sort the list of students and grades based on the grades. We can passa a lambda function
to the key argument that will return the grade value for sorting:

Page 18

https://docs.python.org/3.6/tutorial/controlflow.html?#lambda-expressions
https://docs.python.org/3.6/library/stdtypes.html?highlight=list.sort#list.sort

Econ890-04 Python Summer 2019

print (grades)
grades .sort(key= lambda x: x[1])
print (grades)

If we want to sort in a decreasing order:
print (grades)
grades .sort(key= lambda x: x[1], reverse =True)
print (grades)

4 Input and Output
We now turn to loading and saving files with Python. To begin, let’s create a new file
and save some data in it. Open a file for writing with open:

f = open(’file.txt ’, ’w’)
f is an object representing the file
f has a method for writing to the file: f.write
f.write takes a string and outputs it to the file
f.write(’column1 ,column2 , column3 \n’)
\n is a special character that represents a new line
f.write (’1.23 ,2.34 ,0.3 ,4.5 ’)
Close the file so that it is saved
f.close ()

The file was created in the working directory Python is using. If you are in jupyter note-
book, the working directory will be the folder where you launched jupyter notebook from
using the terminal. You can use the built-in package os to find the working directory:

import os
os. getcwd ()

You can change the path to elsewhere with os.chdir. We can inspect the file outside
Python by opening it with a text editor.

Let’s open the file for reading now:
f = open(’file.txt ’, ’r’) # r for reading only
We can go through the file in different ways
help(f.read)
f.read: Reads until EOF (end of file) and returns a string with everything
data = f.read ()
print (data)
Print string without interpreting the special character \n as a new line
print (repr(data))

Python uses a cursor to go through the file. When we called f.read, this cursor moved
through all characters of the file and stopped at the end of the file. Thus, if we call f.read
again, Python will start reading the file from where the cursor is at. Since the cursor is
already at the end of the file we will get an empty string, since there is nothing to read:

print (f.read ())
print (repr(f.read ()))
To re -read the file , we can either close it and open it again
f.close ()

Page 19

Econ890-04 Python Summer 2019

print (f)
f.read () # file is closed
f = open(’file.txt ’, ’r’)
Now , the cursor is back at the beginning of the file
print (f.read ())
The cursor is back at the end of the file
Move the cursor back to the beginning with f.seek
help(f.seek)
f.seek (0)
print (f.read ())
f.seek (0)
We can read line by line with f. readline
print (f. readline ())
reads until it finds \n, and outputs the result
Read the next line
print (f. readline ())
Read the next line , which does not exist
print (f. readline ()) # empty string

The file object is also an iterator (we will discuss iterators in detail later on). It can be
used in a for-loop in a way similar to a list of numbers. But, in this case, we have a list
of lines:

f.seek (0)
for line in f:

print (line)
After we are done with the file , we can close it
f.close ()

Notice we had to open and close the file. We can use something called a context manager
to the closing job for us. We will discuss context managers in detail later on. We use a
context manager with the with keyword:

with open(’file.txt ’, ’r’) as f:
Inside this block , f represents the file.
We can now read the file however we prefer .
data = f.read ()

When we exit the "with" block , it will take care of closing
the file for us. The file will be closed even if there is an
error which interrupts the execution of the code.
print (data)

Create another file
header = [" Name", "Final Grade "]
grades = {’Gui ’: ’B’,

’Joe ’: ’A’,
’John ’: ’A+’}

for name , grade in grades .items ():
print (name , grade)

with open(’ grades .txt ’, ’w’) as f:
f.write (" ,". join(header) + ’\n’)
for name , grade in grades .items ():

f.write(name + "," + grade + "\n")

Page 20

Econ890-04 Python Summer 2019

Load the file and print grades
with open(’ grades .txt ’, ’r’) as f:

for line in f:
name , grade = line.split (’,’)
returns a list , which we can unpack
print (name + ’ ’ + grade)

5 Objects
A class is what defines an object, and is a way of creating a structure (the object) that
has data and functions together. We have seen many examples so far, like the Python
list.

a = [1, 2, 3]
Creates an instance of a list.
print (a. __class__)
The list a has data , but also functions :
a. append ("4")

When we create a new class, we are defining a new type of object.
An object in python consists of a type, an id, data (attributes) and methods (func-

tions). The attributes of an object can be, for example, the main piece of data it is
storing, but also other relevant information. Some of its attributes can be functions,
which are referred to as the methods of that class. The methods of an object usually
work on the data contained in that object, like in the case of the list, where the append
method used the data stored in a to modify its value.

create an instance of a class
x = [’a’, ’b’, ’c’]
check whether an attribute is a method
callable (x. append)
callable (x. __doc__) # this is a documentation string for the class of x
Some symbols overload methods of an object .
For example , [] overload the method __getitem__
print (x[0])
print (x. __getitem__ (0))
[] can also overload the method __setitem__
x[0] = ’A’ # item assignment
print (x[0])
x. __setitem__ (0, ’a’)
print (x[0])
It is possible to change what [] means by changing the definition
of the functions __setitem__ and __getitem__ in the list class .

Everything in Python is an object, including variables, files, functions and even mod-
ules.

def foo(x):
""" Docs """
return x + 1

Page 21

Econ890-04 Python Summer 2019

A function has a type:
print (type(foo))
It has an id:
print (id(foo))
It has attributes :
print (foo.__name__ , foo. __doc__)
It has methods :
print (foo. __call__)
print (foo. __call__ (1))
Parentheses overload the __call__ method
print (foo (1))
We can see all of its attributes with dir:
print (dir(foo))

6 Handling Exceptions
It is possible to write a Python script that can handle exceptions as they occur during
execution. In fact, many of Python’s own functions use exceptions as a form of control
flow. Let’s see how we can handle errors:

while True:
try:

number = int(input (" Please enter an integer : "))
break

except ValueError :
print (" Invalid input. Not a number , please try again .")

print (f’Your number converted to integer = { number }’)

The input will wait for the user to type something in the standard input and hit
enter. Whatever was inputed will come in as a string, and the int function will attempt
to convert it to an integer. If the string does not contain an integer, then a ValueError
exception will be raised.

int (2.35) # no error , converting float to int works
int (’2’) # works , there is an integer in the string
int (’2.35 ’) # error , no integer in the string

Python will execute whatever is in the try block. If no exception occurs inside the
block, then the except statement is skipped and the try statement is finished. However,
if an exception occur inside the try block, then the rest of the try block is skipped.
Then, if the exception type matches with the keyword that comes after except, the
except block is executed. After the except block is executed, the code continues on.

If another exception occur with a type different than ValueError, then it is an un-
handled exception, and the execution of the script will be stopped and an error message
will be shown. Try executing the while loop above and instead of entering an integer,
hit Ctrl-C Ctrl-C, which will raise a KeyboardInterrupt error. Since this error is not
handled, then the script will be completely interrupted. This is an unhandled error.

It is possible to handle more than one type of exception:
while True:

try:

Page 22

https://docs.python.org/3.6/tutorial/errors.html#handling-exceptions

Econ890-04 Python Summer 2019

number = int(input (" Please enter an integer :"))
except ValueError :

print (" Invalid input. Not an integer , please try again .")
except KeyboardInterrupt :

print ("\n\n")
print (" Input interrupted by the keyboard .")
break # break the while loop so the script stops

else:
print (f’ Integer = { number }’)
break

If we hit Ctrl-C Ctrl-C, then the script will raise a KeyboardInterrupt exception.
On Jupyter this is equivalent to going on the menu Kernel and clicking the button
Interrupt. Which the second except will catch and handle. It hanldes the exception by
printing a message and breaking out of the loop, causing the script to end. Notice that
we have an else clause at the end. That clause will only be executed if no exception is
raised. That happens if the user enters an integer number, in that case the number is
printed and the loop is broken.

If the except keyword is used without specifying an exception type, then it will catch
all exceptions. This is not a good practice since it will catch any exception that you may
or may not expect. Only hanlde exceptions you know how to handle.

Lastly, there is a finally keyword that can be used in a try block:
try:

raise KeyboardInterrupt
except ValueError :

print (’A value error occurred .’)
finally :

print (" Goodbye ")

The above will raise an exception which is not handled. Since the exception is not
handled it will stop the execution of the script. However, before doing so, the code in
the finally clause is executed.

The real world use of the finally clause is to guarantee that resources are correctly
closed, like closing a file or a network connection even if an error in the script occurred.

7 Assertions
Exceptions and the try blocks are used to tackle errors that you can handle. Assertions
are used to alert you of an error that cannot be recovered (that should stop the execution
of the script).

def discountPrice (price , discount):
assert 0 <= discount <= 1, " Discount greater than actual price."
return price *(1- discount)

The assert statement will check if the variable discount is between 0 and 1, and, if it
is not, it will raise an AssertionError with the message "Discount greater than actual
price".

If the discountPrice function sits in the middle of a payment system of some com-
pany, and at some point it is invoked with a discount that is greater than 100%, then

Page 23

https://docs.python.org/3.6/reference/simple_stmts.html#the-assert-statement

Econ890-04 Python Summer 2019

something clearly went wrong somewhere. We found a bug! If this assertion error oc-
curred, then we need to stop the program and fix it. An assertion error should only be
raised if there is a bug in your program.

8 Assignment
All assignments should be submitted to the Github repository you have been assigned
to. The deadline is August 12th by 11 PM. You should write a report in Latex with
the solutions to the problems below. If the problem requires you to code, then the code
should also be included in the report. You can add code to Latex with the lstlisting
package (see this stack post) or the minted package (see this other stack post).

Go to Codewars and sign in with your Github account. Solve the problems listed
below. Your code must pass the submission test on the Codewars website.

8.1 Introductory Problems (start here)
• Opposite Number

• Even or Odd

• Sum of Positive Numbers

• Repeat Strings

• Strip First and Last Character

• Remove White Space

• Counting Sheeps

• Summation

• Basic Calculator

• Counting Numbers in an Array

• Summation with Exclusion

8.2 More Problems
• Count Vowels

• Middle Characters

• Numbers from a String

• Shortest String

• Reverse Digits

• DNA

• x and o

Page 24

http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
http://texdoc.net/texmf-dist/doc/latex/listings/listings.pdf
https://tex.stackexchange.com/a/83883/65818
http://tug.ctan.org/tex-archive/macros/latex/contrib/minted/minted.pdf
https://stackoverflow.com/a/1985330/1445572
https://www.codewars.com/users/sign_in
https://github.com
https://www.codewars.com/kata/56dec885c54a926dcd001095
https://www.codewars.com/kata/53da3dbb4a5168369a0000fe
https://www.codewars.com/kata/5715eaedb436cf5606000381
https://www.codewars.com/kata/57a0e5c372292dd76d000d7e
https://www.codewars.com/kata/56bc28ad5bdaeb48760009b0
https://www.codewars.com/kata/remove-string-spaces/python
https://www.codewars.com/kata/54edbc7200b811e956000556
https://www.codewars.com/kata/55d24f55d7dd296eb9000030
https://www.codewars.com/kata/57356c55867b9b7a60000bd7
https://www.codewars.com/kata/576bb71bbbcf0951d5000044
https://www.codewars.com/kata/576b93db1129fcf2200001e6
https://www.codewars.com/kata/54ff3102c1bad923760001f3
https://www.codewars.com/kata/56747fd5cb988479af000028
https://www.codewars.com/kata/554b4ac871d6813a03000035
https://www.codewars.com/kata/57cebe1dc6fdc20c57000ac9
https://www.codewars.com/kata/5467e4d82edf8bbf40000155
https://www.codewars.com/kata/554e4a2f232cdd87d9000038
https://www.codewars.com/kata/55908aad6620c066bc00002a

Econ890-04 Python Summer 2019

• Squares

• Square Digits

• Create Phone Number

8.3 Challenges
• Multiplicative Persistence

• Tribonacci Sequence

• Equal Sides of an Array

• Build a Tower

Page 25

https://www.codewars.com/kata/54c27a33fb7da0db0100040e
https://www.codewars.com/kata/546e2562b03326a88e000020
https://www.codewars.com/kata/525f50e3b73515a6db000b83
https://www.codewars.com/kata/55bf01e5a717a0d57e0000ec
https://www.codewars.com/kata/556deca17c58da83c00002db
https://www.codewars.com/kata/5679aa472b8f57fb8c000047
https://www.codewars.com/kata/576757b1df89ecf5bd00073b

	Interacting with Python
	Built-In Data Types
	Numerical Data
	Text Data
	Boolean
	Sequences
	Sets
	Mapping (Dictionaries)
	Objects
	Exceptions

	Control Flow Tools
	Conditionals
	Loops
	Break and Else Statements in For Loops
	Functions
	Functions are Objects, like everything else
	Default Values
	Functions with *args and **kwargs
	Anonymous Functions: lambdas

	Input and Output
	Objects
	Handling Exceptions
	Assertions
	Assignment
	Introductory Problems (start here)
	More Problems
	Challenges

