
Econ890-01 Matlab Guilherme Salomé

Measuring and Improving Code Performance

1 Measuring Performance
Matlab offers two main tools for measuring the performance of code and finding out
its bottlenecks. The first are the timing functions, which can be used to measure how
long pieces of code and functions take to run. The second is the profiling tool of Matlab,
which can measure the performance of large pieces of code (several functions) and displays
results in a nice interface.

1.1 Timing
We can time pieces of code with the functions tic and toc. When tic is executed, it
starts an internal stopwatch and returns a number (optional) representing the time when
tic was executed. The function toc displays how much time has elapsed in seconds
since the function tic was executed. Subsequent calls to toc display how much time has
elapsed since the first tic has been executed. We can start a new timer by calling tic
again.

We can use tic and toc to time pieces of code.
1 % measure how long it takes to execute the code below
2 % start timer
3 tic
4 n = 10000;
5 a = rand(n, n);
6 b = rand(n, 1);
7 a*b;
8 toc
9
10 % we can store the time in a variable
11 t = toc;
12
13 % measure time depending on size of matrix
14 n_values = 1:500:10000;
15 t = zeros(length(n_values), 1);
16 for i = 1: length(n_values)
17 tic;
18 n = n_values (i);
19 a = rand(n, n);
20 b = rand(n, 1);
21 a*b;
22 t(i) = toc;

Page 1

https://www.mathworks.com/help/matlab/ref/tic.html?s_tid=doc_ta
https://www.mathworks.com/help/matlab/ref/toc.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

23 end
24 plot(n_values , t)

We can create more than one timer by saving the output of tic, which can then be
passed to toc to measure the time difference with respect to the respective tic.

1 total_time = tic;
2 repetitions = 100;
3 times = zeros(length(repetitions), 1);
4 for rep = 1: repetitions
5 t = tic;
6 % do computation
7 mean(randn (10000000 , 1));
8 % store time
9 times(rep) = toc(t);
10 end
11 % average time
12 disp(sprintf ('Average time: %.2f seconds (%d repetitions)',

...
13 mean(times), length(times)));
14 % total time
15 disp(sprintf ('Total time: %.2f seconds ', toc(total_time)));

The functions tic and toc are good to time small pieces of code, but to get a more
precise time estimation it is necessary to re-run the same code several times and average
the tic and toc results.

A more rigorous timing measure can be obtained with the function timeit. We can use
timeit to measure the typical time it takes to run a function. Given a function, timeit
runs it several times and reports the median time it takes to complete its execution.

Create a test function:
1 % test_timeit .m
2 function [a, b] = test_timeit (X)
3 beta = rand(size(X, 2), 1);
4 a = X*beta;
5 if nargout > 1
6 b = exp(a);
7 end

Use timeit to time the execution of the function:
1 % specify the input to test_timeit
2 X = rand (5000);
3 timeit (@() test_timeit (X))
4 % specify how many outputs the function being timed should

return
5 timeit (@() test_timeit (X), 2)

Page 2

https://www.mathworks.com/help/matlab/ref/timeit.html

Econ890-01 Matlab Summer 2019

1.2 Profiling
The command profile can be used to profile large pieces of code. We can start the
profiler by executing profile on. Then, any code that we run afterwards will be au-
tomatically timed. We can then call profile viewer to stop the profiler and see the
results in a new window. Let’s first create a test code:

1 % test_profiler .m
2 clear all
3 clc
4 % Load stock data
5 data = readmatrix ('AAPL.csv ');
6 % Compute intraday log - returns
7 prices = reshape (data (:, 3), 78, []);
8 returns = diff(log(prices));
9 % Compute realized variance
10 RV = sum(returns .^2);
11 % Generate bootstrap samples to compute confidence interval
12 total_samples = 10000;
13 RVs = zeros(total_samples , length(RV));
14 pbar = waitbar (0, 'Bootstrapping '); % progress bar
15 for i = 1: total_samples
16 % generate bootstrap indices
17 indices = unidrnd (size(returns , 1), size(returns , 1), 1);
18 % bootstrap sample of the returns
19 returns_sample = returns (indices , :);
20 % compute statistic for each day
21 RVs(i, :) = sum(returns_sample .^2);
22 % generate progress bar
23 waitbar (i/total_samples , pbar);
24 end
25 close(pbar);
26 % Compute confidence interval
27 CI = quantile (RVs , [0.005 0.995]) ';
28 % Generate timestamps for plotting
29 dates = data (1:78: end , 1);
30 years = floor(dates ./10000) ;
31 months = floor ((dates - years .*10^4) ./100);
32 days = floor(dates - years .*10^4 - months .*10^2) ;
33 sdates = datenum (years , months , days);
34 % Plot realized variance with correct x-ticks
35 plot(sdates , RV , 'k');
36 datetick ('x', 'yyyy ');
37 grid on;
38 % Shade confidence interval region
39 hold on;
40 f = fill ([sdates; flip(sdates)], [CI(:, 1); flip(CI(:, 2))],

'k');
41 f. FaceAlpha = 0.2;

Page 3

https://www.mathworks.com/help/matlab/ref/profile.html

Econ890-01 Matlab Summer 2019

42 f. EdgeAlpha = 0;

Now, we can use the profiler to analyze the code for bottlenecks. Clear the workspace
before running the profiler.

1 clear all
2 profile on
3 test_profiler
4 profile viewer

The command profile viewer displays the window shown in Figure 1.

Figure 1: Profile Summary Window.

The profiler window shows all functions called while the profiler was on. The functions
are sorted by total executing time. You can click on each function to see a more detailed
break down of the execution. Click on the test_profiler function, and you should see
a window similar to what Figure 2 displays.

Figure 2: Profiler Detail Window.

We see that the test_profiler function took around 30 seconds to finish running.
The window also shows the lines where most of the time was spent. We see that out of
the 30 seconds, almost 5 seconds were spent on generating bootstrap samples from the
original returns. That line was executed 10000 times. You can click on the line number
to see the code around it. Click on the button for line 19. You should see a window
similar to what is displayed in Figure 3.

Page 4

Econ890-01 Matlab Summer 2019

Figure 3: Profiler Line by Line Timing.

The lines displayed in darker red are the ones that take longer to execute. Lines 19
and 21 take about the same time to execute, while updating the progress bar takes the
longest. We can use this information to identify lines that are inefficient, update the code
and test again.

We can save the profiler results by executing the command profsave, which stores
the results in a folder named profile_results. The file file0.html contains the same
information as the profiler summary window, displayed in Figure 1.

Using the profiler is useful when working with a data set that is large. The idea is to
use a small subset of the data to develop your code, then time it to see how long it takes.
Then, you extrapolate how much time it would take to run your code on the entire data
set. If the total time is acceptable then you are done. However, if it is not, then you
should profile the code and see where you could improve it before running on the entire
data set.

2 Efficiency Tips
We will now cover some general tips for efficiency when coding. Let’s use the functions
tic and toc to check the difference in execution time.

Avoid creating temporary objects:
1 times = zeros (1000 , 1);
2 for i = 1:1000
3 tic
4 %% Code to time
5 A = 2* randn (10000 , 100);
6 B = A.^2;
7 % store time
8 times(i) = toc;
9 end
10 % report median
11 disp(sprintf ('Median execution time: %.4f seconds ', median(

times)));
12
13 times = zeros (1000 , 1);
14 for i = 1:1000

Page 5

https://www.mathworks.com/help/matlab/ref/profsave.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

15 tic
16 %% Code to time
17 B = (2* randn (10000 , 100)).^2;
18 % store time
19 times(i) = toc;
20 end
21 % report median
22 disp(sprintf ('Median execution time: %.4f seconds ', median(

times)));

The object stored in A is temporary, created at the beginning of each loop, then used
to compute B, and then reassigned when a new loop starts. We can avoid creating and
deleting A by moving the randn command into B.

Pre-allocate matrices whenever possible.
1 %% Append to vector
2 tic
3 a = [];
4 for j = 1:10000
5 a = vertcat (a, randn (1));
6 end
7 disp(sprintf ('Time: %.4f seconds ', toc));
8 %% Pre -allocate and then modify vector
9 tic
10 a = zeros (10000 , 1);
11 for j = 1:10000
12 a(j) = randn (1);
13 end
14 disp(sprintf ('Time: %.4f seconds ', toc));

Creating a matrix and then extending it is slower than pre-allocating the matrix. Ex-
tending the matrix means Matlab has to allocate more and more memory at each loop,
recreating the vector a at each iteration. This reduces the efficiency of the code and
makes it slower. Pre-allocating the matrix allows for a single block of memory to be
allocated to the vector a.

Use sparse matrices to save memory when dealing with a large number of zeros.
1 A = eye (10000) ; % not sparse
2 B = sparse(eye (10000)); % sparse
3 whos A B;

Sparse arrays only stores the nonzero elements in memory. It is possible to visualize the
sparsity of a matrix with the function spy.

Vectorize operations if possible:
1 m_size = 1000000;
2 x = randn(m_size , 1);
3 y = rand(m_size , 1);
4 %% Not vectorized
5 z = zeros(m_size , 1);
6 tic

Page 6

https://www.mathworks.com/help/matlab/ref/spy.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

7 for i = 1: m_size
8 z(i) = x(i)*y(i);
9 end
10 disp(sprintf ('Time: %.4f seconds ', toc));
11 %% Vectorized
12 clear z
13 tic
14 z = x.*y;
15 disp(sprintf ('Time: %.4f seconds ', toc));

A vectorized operation can run faster than a for-loop if it uses a built-in function. It is
also more self-documenting than a for-loop and often leads to fewer lines of code.

3 Generating and Using C Code with Matlab
We can execute code written in C, C++ or Fortran with Matlab. To do so, we need to
create a binary file named MEX, which can then be called in Matlab as a regular function.
To create MEX files, we will use a Matlab tool that can convert Matlab code to some other
language. For this section you will need to install Matlab Coder (or learn how to code in
C or C++). You can also execute coder on Matlab to get a prompt to install it.

We will learn how to generate the MEX files with an example. Write the following
function:

1 % euclidean_dist .m
2 function [distances , point_min , point_max] = euclidean_dist (x

,points)
3 % Compute Euclidean norm between x and the points
4 distances = sum ((x-points).^2) .^0.5;
5 % Obtain points that maximize and minimize the distance
6 [~, id_min] = min(distances);
7 [~, id_max] = max(distances);
8 % Save these points
9 point_min = points (:, id_min);
10 point_max = points (:, id_max);
11 end

This functions takes a column vector x, and a matrix containing multiple column vectors
points, then computes the Euclidean distance between x and the other points. The
functions has three outputs, the distance between all points, the vector closest to x and
the vector farthest from x.

Now, we need to use Matlab’s Code Analyzer. To do so, add the comment %#codegen
right after the definition of the function euclidean_dist:

1 function [distances , point_min , point_max] = euclidean_dist (x
,points) %# codegen

This will trigger the Code Analyzer to check for any issues that could prevent the Matlab
code from being converted to C/C++. If there are no errors, a green square will appear
on the upper right-hand side of the Editor window. If there are errors, then the lines
with issues will be underlined in red. You can hover the mouse on top of the line to see a

Page 7

https://www.mathworks.com/help/coder/index.html?s_tid=CRUX_lftnav
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B

Econ890-01 Matlab Summer 2019

message explaining the issue and how to fix it. Most of the features of the programming
language are supported by the converter, but some are not. For a full list of the supported
and unsupported features, see this reference page.

Figure 4 displays the results of the Code Analyzer for the function euclidean_dist.

Figure 4: Code Analyzer Without Errors.

Now, we will use the function coder.screener to call the Code Generation Readiness
Tool. This tool also checks for possible issues that can arise when generating the C/C++
code.

1 coder. screener ('euclidean_dist ')

Figure 5 shows the output of the code above. It indicates the function we created
should not lead to issues when being converted to C/C++ code.

Figure 5: Output of Code Generation Readiness Tool.

We can now generate the MEX file with the codegen command. The MEX file is based
on C code, which is statically typed. This means we need to define the type (class) and
size of the inputs to the function when generating the lower-level code. We start with
the case where the size of the inputs is fixed.

3.1 Fixed-Size Inputs
The type and size of inputs can be inferred when generating the lower-level code by giving
an example to the command codegen.

1 % create example for codegen
2 x = [1; 2; 3]; % size 3 x 1
3 points = rand (3, 10); % size 3 x 10

To create the MEX file, we call codegen by passing it the name of the file we want to
convert and the example inputs:

Page 8

https://www.mathworks.com/help/simulink/ug/matlab-language-features-supported-for-code-generation.html
https://www.mathworks.com/help/coder/ref/coder.screener.html?s_tid=doc_ta
https://www.mathworks.com/help/coder/ug/code-generation-readiness-tool.html
https://www.mathworks.com/help/coder/ug/code-generation-readiness-tool.html
https://www.mathworks.com/help/coder/ref/codegen.html

Econ890-01 Matlab Summer 2019

1 codegen -report euclidean_dist .m -args {x, points}

The option -report generates a report that we can use to debug any issues that arise dur-
ing the conversion. After the -report, we have the file name, in this case euclidean_dist.m,
and then the option -args and a cell containing the example inputs. The codegen com-
mand infers the type and size of the inputs from the type and size of x and points.

When we execute the code above you will see an error. The error is depicted in Figure
6.

Figure 6: Codegen Error.

The error says there is some type of mismatch in the code. We can get more detail
by clicking on View Error Report, which will open the window depicted in Figure 7.

Figure 7: Codegen Report and Error Message.

The error report shows that there is a mismatch in size between x and points. It
is not an issue in the Matlab code, because when we execute x-points, the vector x
is broadcasted to have the same size of points. However, it leads to an issue when
converting the code to C. We can fix it, by using repmat on the vector x to avoid the
mismatch:

1 % Modify the line:
2 distances = sum ((x-points).^2) .^0.5;
3 % To:
4 distances = sum ((repmat(x, 1, size(points , 2))-points).^2)

.^0.5;

Page 9

https://www.mathworks.com/help/matlab/ref/repmat.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

We can now compile the code by running:
1 codegen -report euclidean_dist .m -args {x, points}

The code generation should complete successfully. A file named euclidean_dist_mex.mexmaci64
will be created. This file contains the binaries that can be executed by Matlab as a reg-
ular function. We can compare the time it takes to run the original function and the
compiled function:

1 % use timeit to compare execution time of the functions
2 sprintf ('Original Function : %.6f seconds ', timeit (@()

euclidean_dist (x, points), 3))
3 sprintf ('MEX Function : %.6f seconds ', timeit (@()

euclidean_dist_mex (x, points), 3))

In this case, there is little gain since vectorized and simple operations in Matlab are
already very fast. However, the gains in speed will increase when loops are involved.

Notice that if you try to execute euclidean_dist_mex with a vector points of a size
different than the one specified, you will get an error.

1 points = rand (3, 5);
2 euclidean_dist_mex (x, points) % error

Next, we modify the MEX file to accept an input that can vary in size.

3.2 Variable-Size Inputs
To have the MEX function accept inputs of varied sizes, we use the function coder.typeof
to specify the size of the inputs. The function coder.typeof takes three inputs:

1. An example for the input (like x);

2. A vector that specifies an upper bound for each dimension of the input;

3. A vector that specified whether each dimension of the input is variable in size or
fixed in size.

Suppose we want to allow x to have up to 10 rows, but always one column. And we
want points to have up to 10 rows, and up to 10 columns.

1 x = [1; 2; 3];
2 example_x = coder.typeof(x, [10 1], [1 0]);
3 % [10 1] specifies the upper bound for the dimensions of x
4 % [1 0] specifies that the size of the first dimension is

variable ,
5 % while the second is fixed
6 points = rand (3, 10);
7 example_points = coder.typeof(points , [10 10], [1 1]);
8 % [10 10] specifies the upper bound for the dimensions of the

points
9 % [1 1] specifies that both dimensions are variable

We can now compile the code as before with codegen, and use example_x and
example_points as the examples, instead of x and points:

Page 10

https://www.mathworks.com/help/coder/ref/coder.typeof.html

Econ890-01 Matlab Summer 2019

1 codegen -report euclidean_dist .m -args {example_x ,
example_points }

This will overwrite euclidean_dist_mex with the new version. We can test it:
1 x = rand (7, 1);
2 points = rand (7, 3);
3 euclidean_dist_mex (x, points)

We can further modify the code to allow x to have as many rows as we want, but
always one column. And points to have as many rows and columns as we want.

1 example_x = coder.typeof(x, [Inf 1], [1 0]);
2 example_points = coder.typeof(points , [Inf Inf], [1 1]);
3 codegen -report euclidean_dist .m -args {example_x ,

example_points }

This will overwrite euclidean_dist_mex with the new version. We can test it:
1 x = rand (23, 1);
2 points = rand (23, 40);
3 euclidean_dist_mex (x, points)

3.3 Generating C Code
If you have a supported C compiler installed on your machine, you can also generate the
C code from the Matlab files. You do so by adding the option -config:lib when calling
codegen:

1 codegen -d matlab_to_c -report euclidean_dist .m -args {
example_x , example_points }

Notice the use of the option -d matlab_to_c, which stores the resulting files in the folder
named matlab_to_c.

3.4 Observations
The MEX files are platform specific, so if you compile a file in Windows, for example, then
you will not be able to re-use it in Linux. However, if you have the original .m file you
can re-compile it again in a different platform.

It is not possible to generate MEX files from Matlab scripts, only for functions. If you
need to convert a script, then you must write it in a function format.

If you are often converting a file to MEX, it is good practice to create a build script
that will do the conversion. For example:

1 % generate_mex_euclidean_dist .m
2 % Generates .mex file for: euclidean_dist .m
3 % Define inputs
4 example_x = coder.typeof(x, [Inf 1], [1 0]);
5 example_points = coder.typeof(points , [Inf Inf], [1 1]);
6 % Call codegen

Page 11

https://www.mathworks.com/support/requirements/supported-compilers.html

Econ890-01 Matlab Summer 2019

7 codegen -report euclidean_dist .m -args {example_x ,
example_points }

Then, we can execute generate_mex_euclidean_dist on Matlab to generate the MEX
file.

4 Parallelization
We can speed up the execution of code in Matlab by taking advantage of the multiple
cores available in modern computers. Matlab offers a relatively easy way to make for-
loops run in parallel on multiple cores using parfor. To make use of multiple cores, you
will need to install the Parallel Computing Toolbox. It makes sense to make a for-loop
run in parallel if:

• Each iteration of the loop takes a long time

• The loop iterations are independent from one another

We can use the parfor functionality to work with embarrassingly parallel problems. A
problem is called embarrassingly parallel if it can be broken into smaller pieces that have
little to no dependency between one another.

The syntax for parfor is similar to the syntax of for-loops:
1 parfor i = 1:10
2 % code to be executed at each iteration
3 disp(i)
4 end

However, the loop is executed in parallel and the order of execution is not deterministic.
Additionally, the code executed within the loop must not depend on previous iterations
of the loop.

If you execute the code above, Matlab will start a pool of workers and then execute
the loop in parallel. The pool of workers takes some time when it is first initialized, but
can be used afterwards without slow downs. The workers are associated to the cores in
the computer’s processor. The more cores available, the more workers can be added to
the pool. It is possible to set the number of workers to be used in the settings panel for
the Parallel Computing Toolbox.

The code above displays the value of the variable i on each iteration. Notice that the
values are displayed out of order. This happens because the iterations are executed in a
non-deterministic fashion.

4.1 Converting a For-Loop into a Parfor-Loop
As an example, let’s convert a for-loop that bootstraps the confidence interval for the
mean into a parfor-loop. First, we begin with the data generation and bootstrapping
in an usual for-loop:

1 % true mean
2 mu = 10.35;
3 % generate random sample
4 sample = normrnd (mu , 2, 1000 , 1);

Page 12

https://www.mathworks.com/help/parallel-computing/parfor.html
https://www.mathworks.com/products/parallel-computing.html
https://en.wikipedia.org/wiki/Embarrassingly_parallel

Econ890-01 Matlab Summer 2019

5 % bootstrap
6 total_iter = 100;
7 means = zeros(total_iter , 1);
8 for i = 1: total_iter
9 % create bootstrap sample
10 b_sample = sample(randi(length(sample), length(sample),

1));
11 % compute statistic
12 means(i) = mean(b_sample);
13 end
14 % display 99% confidence interval for the mean
15 CI = quantile (means , [0.005 0.995]) ;
16 sprintf ('99%% Confidence Interval for Mean: [%.4f, %.4f]', CI

)

Let’s make the code above into a function, so that we can specify the sample size and
the number of bootstrap samples.

1 % bootstrap_mean_CI .m
2 function CI = bootstrap_mean_CI (varargin)
3 parser = inputParser ;
4 addOptional (parser , 'sample_size ', 1000);
5 addOptional (parser , 'bootstrap_samples ', 1000);
6 parse(parser , varargin {:});
7 sample_size = parser. Results . sample_size ;
8 bootstrap_samples = parser. Results . bootstrap_samples ;
9 % true mean
10 mu = 10.35;
11 % generate random sample
12 sample = normrnd (mu , 2, sample_size , 1);
13 % bootstrap loop
14 means = zeros(bootstrap_samples , 1);
15 for i = 1: bootstrap_samples
16 % create bootstrap sample
17 b_sample = sample(randi(length(sample), length(sample),

1));
18 % compute statistic
19 means(i) = mean(b_sample);
20 end
21 % display 99% confidence interval for the mean
22 CI = quantile (means , [0.005 0.995]) ;
23 end

Time the function:
1 sprintf ('Elapsed Time: %.4f seconds ', timeit (@

bootstrap_mean_CI))
2 % increase sample size
3 fun = @() bootstrap_mean_CI (10000) ;
4 sprintf ('Elapsed Time: %.4f seconds ', timeit(fun))

Page 13

Econ890-01 Matlab Summer 2019

5 % increase number of bootstrap samples
6 fun = @() bootstrap_mean_CI (10000 , 5000);
7 sprintf ('Elapsed Time: %.4f seconds ', timeit(fun))

When we increase the original sample size, the computation of the mean statistic starts
taking more time. When we increase the number of bootstrap samples, we increase the
number of iterations in the bootstrap loop.

Observe that the iterations in the bootstrap loop are independent from one another.
Also, each iteration might take a while, specially if the sample size is big. Therefore, we
have an embarrassingly parallel problem. We can use parfor to speed up this computa-
tion. In this case, all we need to do is change the for-loop into a parfor-loop:

1 % bootstrap_mean_CI_parallel .m
2 function CI = bootstrap_mean_CI_parallel (varargin)
3 % change only the line
4 for i = 1: bootstrap_samples
5 % into
6 parfor i = 1: bootstrap_samples

We can execute the code once to get the pool of workers started. Then, we time the
execution and compare to the non-parallel version.

1 sprintf ('Non - Parallel : %.4f seconds \ nParallel : %.4f seconds ',
...

2 timeit (@ bootstrap_mean_CI), timeit (@
bootstrap_mean_CI_parallel))

3 % increase sample size
4 fun = @() bootstrap_mean_CI (10000) ;
5 pfun = @() bootstrap_mean_CI_parallel (10000) ;
6 sprintf ('Non - Parallel : %.4f seconds \ nParallel : %.4f seconds ',

...
7 timeit(fun), timeit(pfun))
8 % increase number of bootstrap samples
9 fun = @() bootstrap_mean_CI (10000 , 5000);
10 pfun = @() bootstrap_mean_CI_parallel (10000 , 5000);
11 sprintf ('Non - Parallel : %.4f seconds \ nParallel : %.4f seconds ',

...
12 timeit(fun), timeit(pfun))

Notice that there is no improvement in speed for the cases where the sample size is small
and the number of bootstrap samples is small. This can happen because there is some
overhead involved in making a for-loop run in parallel. Indeed, each worker must have
access to the data being re-sampled. If copying this data over takes longer than the
computations in the loop, then the parallel loop will run slower. When the sample size
increases, the computation in the loop starts becoming slower than copying the data to
the worker, and running the loop in parallel starts becoming quicker. When the number
of bootstrap samples increases (number of iterations in the loop), the speed gain from
the parfor-loop becomes relevant.

Page 14

Econ890-01 Matlab Summer 2019

4.2 Requirements for Parfor-Loop
There are a few requirements to use parfor. First, the looping variable must take integer
values, and the values must be consecutive and increasing:

1 % does not work: non - consecutive integers
2 parfor i = -5:2:5
3 disp(i)
4 end
5 % does not work: not integers
6 parfor i = 0:0.2:1
7 disp(i)
8 end
9 % does not work: not increasing
10 parfor i = 10: -1:1
11 disp(i)
12 end
13 % works: consecutive and increasing integers
14 parfor i = -5:5
15 disp(i)
16 end

Second, when Matlab encounters a parfor, it classifies all of the variables inside the loop
in 5 different categories. The categories describe what each variable is doing inside the
loop. The categories are:

• Loop variables: loop indices in the loop;

• Sliced variables: arrays that are sliced inside the loop and used by different itera-
tions;

• Broadcast variables: variables defined outside the loop and used inside it, but that
are not assigned inside the loop;

• Reduction variables: variables that accumulate values across iterations of the loop

• Temporary variables: variables created inside the loop and not used outside the
loop

If a variable cannot be uniquely classified into one of the five categories, then Matlab will
give an error. For example:

1 x = [1; 2];
2 out = zeros (10, 1);
3 parfor i = 1:10
4 x(1) = 5;
5 x(2) = 10;
6 out(i) = sum(x);
7 end

In this case, it is not clear what is the role of the variable x. It is acting like a sliced
variable, but at the same time as a temporary variable. The code above will not run and
Matlab will display an error. We can fix it, by making x a temporary variable:

Page 15

Econ890-01 Matlab Summer 2019

1 out = zeros (10, 1);
2 parfor i = 1:10
3 x = [5 10];
4 out(i) = sum(x);
5 end

Now, x is being created inside the loop and it is clear that different iterations of the loop
do not depend on one another.

Third, parfor-loops cannot be nested:
1 % does not work
2 parfor i = 1:5
3 sprintf ('i=%d', i)
4 parfor j = 1:3
5 disp(j)
6 end
7 end
8 % works
9 parfor i = 1:5
10 sprintf ('i=%d', i)
11 for j = 1:3
12 disp(j)
13 end
14 end

Nesting parfor does not work because we are already using all the workers (cores) in the
outermost parfor, so the loop inside should be treated as a regular loop. For a complete
set of issues that may arise when using parfor, refer to the reference page for variables
in parfor-loops.

4.3 Memory Management
The parfor command can lead to memory issues. Each worker gets a copy of the variables
in the workspace, so if you are using 2 GB of memory in your workspace and have a parfor-
loop with 4 workers, then Matlab will require access to 8 GB of memory. Therefore, if
you are working with big matrices, or your computer has a big number of cores, then you
need to be mindful of the memory being used.

5 Assignment
Problem 1 Consider a deterministic growth model, where an agent decides between con-
sumption (ct) and investment in capital (kt), while maximizing his utility. We can write
this problem as:

max
∞∑
t=0

βtU(ct)

subject to

kt+1 = kαt − ct + (1− δ)kt,∀t >= 0
k0 > 0

Page 16

https://www.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html
https://www.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

Econ890-01 Matlab Summer 2019

Write the problem as a Bellman equation. Let U(c;σ) = c1−σ−1
1−σ . Obtain the Euler equation

for this problem in terms of the consumption c. Solve the problem by Value Function
Iteration. Consider σ = 2, β = 0.95, δ = 0.1 and α = 0.33. Use the steady state value of
k to create a grid for the possible values of k, say 100 points between 0.25k∗ and 1.75k∗.
Start with a guess for V over the grid, for example V (k) = 0 for all k in the grid. Use the
Matlab minimization function to solve for k. You may want to add the constraint that c
should always be positive.

Use parfor to speed up the solution of this problem. What can be easily run in parallel
in this problem? Is this problem embarrassingly parallel? If not, are there subsets of the
problem that are embarrassingly parallel?

Graph the time it takes to find the solution of the problem when the number of grid
points increases. Compare the time using regular loops and using parfor loops.

Page 17

https://en.wikipedia.org/wiki/Bellman_equation

	Measuring Performance
	Timing
	Profiling

	Efficiency Tips
	Generating and Using C Code with Matlab
	Fixed-Size Inputs
	Variable-Size Inputs
	Generating C Code
	Observations

	Parallelization
	Converting a For-Loop into a Parfor-Loop
	Requirements for Parfor-Loop
	Memory Management

	Assignment

