
Econ890-01 Matlab Guilherme Salomé

Optimization

This lecture explores the optimization tools available in Matlab. We begin with a
light discussion on methods of minimization.

1 The Optimization Problem
Consider an optimization problem where we need to find the minimum value of a function
f : R 7→ R on some subset of its domain:

min
x∈D

f(x)

We are interested in solving this problem. However, it is not clear that a solution to this
problem exists. We know that if f is a continuous function and D is a compact set, then
by the Weierstrass theorem ∃x∗ ∈ D : f(x∗) ≤ f(x),∀x ∈ D. Under these conditions,
we know that a solution to the problem exists, but we still need a way to find it. If the
function f is not continuous, or D is not a compact set, then a solution may or may not
exist.

Even though we cannot always guarantee that a solution exists, if a solution does
exist, then it must satisfy a necessary condition. If x0 is a point where f is minimized
(or maximized) and f is differentiable at x0, then f ′(x0) = 0 (see Fermat’s theorem
on stationary points). This necessary condition motivates many of the optimization
algorithms.

The algorithms for finding the argument that minimizes a function are divided in
two types: direct search methods and gradient-based methods. Direct search methods
do not rely on the derivative of a function, and so can be applied to non differentiable
functions. These methods directly search for optimal points across the domain of a
function. An example of a direct search method is the Golden-section search. Gradient-
based methods use the derivative of a function to find a value x such that f ′(x) = 0. In
these algorithms, the gradient can be explicitly computed or approximated numerically.
Examples of gradient-based algorithms are: Bisection method, Newton-Raphson method
and Secant method.

These optimization methods apply to functions of a single variable. However, they
are building blocks for optimization methods for functions of many variables. When it
comes to optimization algorithms for functions of many variables, we can still divide the
algorithms in the same two types. Examples of direct search methods for multivariate
functions are: Powell’s method and Nelder-Mead method. Some of the optimization
methods that use the gradient are: Newton’s method, DFP method, BFGS method and
the Gradient Descent method.

Page 1

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Extreme_value_theorem
https://en.wikipedia.org/wiki/Fermat%27s_theorem_(stationary_points)
https://en.wikipedia.org/wiki/Fermat%27s_theorem_(stationary_points)
https://en.wikipedia.org/wiki/Golden-section_search
https://en.wikipedia.org/wiki/Bisection_method
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Secant_method
https://en.wikipedia.org/wiki/Powell's_method
https://en.wikipedia.org/wiki/Nelder\T1\textendash Mead_method
https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Davidon\T1\textendash Fletcher\T1\textendash Powell_formula
https://en.wikipedia.org/wiki/Broyden\T1\textendash Fletcher\T1\textendash Goldfarb\T1\textendash Shanno_algorithm
https://en.wikipedia.org/wiki/Gradient_descent

Econ890-01 Matlab Summer 2019

The methods above apply to unconstrained optimization problems. However, in prac-
tice we usually have to deal with optimization problems that are subject to constraints:

minimize
x∈Rd

f(x)

subject to fi(x) ≤ bi, i = 1, . . . , d

For constrained problems, some of the optimization methods are: Penalty function
method, Augmented Lagrangian method and Sequential quadratic programming. These
methods either transform the constrained problem into an unconstrained problem with an
added term that penalizes values that are outside the original constraints, or take extra
care when looking through the domain to make sure the points satisfy the constrains.

Fortunately, we do not need to implement these algorithms, as most of them are
already implemented in Matlab (and in various other programming languages). A refer-
ence for all of the optimization algorithms mentioned above is Arora (2015), which also
provides the code for these algorithms. On the next sections we will discuss how to use
the optimization methods available in Matlab, available via the Optimization Toolbox
(should already be installed if you also installed the Econometrics Toolbox).

2 Unconstrained Optimization (Gradient Based)
The function fminunc solves the optimization problem:

min
x
f(x)

where f : Rd 7→ R is a function of many variables that returns a scalar. Remember
that maximizing a function g is equivalent to minimizing −g, so this solver can deal with
minimization and maximization.

To use fminunc we need to supply it a function handle and an initial point. It works
with functions of a single variable:

1 % polynomial example
2 f = @(x) x.^2;
3 x0 = 100;
4 [x, fx] = fminunc (f, x0);
5 % x: the argmin of the function
6 % fx: the value of the function at the minimizer
7 % the value of x is numerically close to zero (same for f'(x)

)

And also functions of many variables:
1 % polynomial example on R2
2 f = @(x) 3*x(1) .^2 + 2*x(1)*x(2) + x(2) .^2 - 4*x(1) + 5*x(2);
3 % surface plot over a large region
4 x = linspace (-10000 , 10000) ';
5 y = linspace (-10000 , 10000) ';
6 [X, Y] = meshgrid (x, y);
7 Z = [X(:) Y(:)];
8 z = zeros(length(Z), 1);

Page 2

https://en.wikipedia.org/wiki/Penalty_method
https://en.wikipedia.org/wiki/Penalty_method
https://en.wikipedia.org/wiki/Augmented_Lagrangian_method
https://en.wikipedia.org/wiki/Sequential_quadratic_programming
https://www.mathworks.com/help/optim/
https://www.mathworks.com/help/optim/ug/fminunc.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

9 for i = 1: length(Z)
10 z(i) = f(Z(i, :));
11 end
12 z = reshape (z, length(y), length(x));
13 fig = surf(x, y, z);
14 hold on;
15 % find minimum
16 x0 = [1, 1];
17 [x, fx] = fminunc (f, x0);
18 % draw minimum on plot
19 scatter3 (x(1) , x(2) , fx , 60, 'ro', 'filled ');

We used scatter3 to add a point at the minimum. The surface plot is shown in Figure
1.

Figure 1: Surface of a Polynomial on R2 and its Minimum.

Notice that in the examples above we did not supply the gradient of the function to
fminunc. In this case, Matlab is limited to numerically approximating the derivative,
which can be unstable and is slow. When no gradient is supplied, fminunc uses the
Quasi-Newton method and approximates the derivative with finite differences. However,
we can improve fminunc by also providing the gradient of the function. In this case,
fminunc can also use the Trust-Region method.

To supply the gradient to fminunc, the function we want to minimize should output
two values: the first is the objective function value (scalar), and the second is the gradient
(vector) of the function.

1 % rosenbrock .m
2 function [f, gradient] = rosenbrock (x)
3 % rosenbrock computes the Rosenbrock function
4 % reference : https :// en. wikipedia .org/wiki/

Rosenbrock_function
5 f = 100*(x(2) -x(1) ^2) ^2 + (1-x(1))^2;
6 gradient = [-400*(x(2) -x(1) ^2)*x(1) -2*(1-x(1));
7 200*(x(2) -x(1) ^2)];
8

Page 3

https://www.mathworks.com/help/matlab/ref/scatter3.html
https://en.wikipedia.org/wiki/Quasi-Newton_method
https://www.mathworks.com/help/optim/ug/unconstrained-nonlinear-optimization-algorithms.html

Econ890-01 Matlab Summer 2019

9 % check if user expects more than 1 output (i.e., also wants
the gradient)

10 if nargout > 1
11 gradient = [-400*(x(2) -x(1) ^2)*x(1) -2*(1-x(1));
12 200*(x(2) -x(1) ^2)];
13 end

We use nargout to check how many outputs are expected.
1 % in this case nargout is 1
2 f = rosenbrock ([1; 0])
3 % in this case nargout is 2
4 [f, gradient] = rosenbrock ([1; 0])

Let’s visualize this function:
1 x = linspace (-2, 2);
2 y = linspace (-3, 3);
3 [X, Y] = meshgrid (x, y);
4 Z = [X(:) Y(:)];
5 z = zeros(length(Z), 1);
6 for i = 1: length(Z)
7 z(i) = rosenbrock (Z(i, :));
8 end
9 z = reshape (z, length(y), length(x));
10 fig = surf(x, y, z);
11 hold on;
12 % actual minimum
13 scatter3 (1, 1, 0, 60, 'ro', 'filled ');

The graph of the function is shown in Figure 2.

Figure 2: Rosenbrock Function and Global Minimum.

We can now call fminunc and pass it an options argument, which specifies that the
gradient of the function is also available. The options argument is created with the
function optimoptions.

Page 4

https://www.mathworks.com/help/matlab/ref/nargout.html?s_tid=doc_ta
https://www.mathworks.com/help/optim/ug/optimoptions.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

1 % set up options for fminunc
2 % The first argument is the optimizer we are using , in this

case ,
3 % 'fminunc '. The other arguments are name -value pairs.
4 options = optimoptions ('fminunc ', ...
5 'SpecifyObjectiveGradient ', true , ...
6 'Algorithm ', 'trust -region ');
7 [x, fx] = fminunc (@ rosenbrock , [-1, 2], options);

We can also use the options argument to display the algorithm iterations as they
occur:

1 options = optimoptions ('fminunc ', ...
2 'SpecifyObjectiveGradient ', true , ...
3 'Algorithm ', 'trust -region ', ...
4 'Display ', 'iter ');
5 [x, fx , exitflag , output] = fminunc (@ rosenbrock , [-1, 2],

options);

The output is a struct containing information about the optimization, and the exitflag
indicates a number representing the type of solution obtained (1 for local minima, see
exitflag for the meaning of the other values).

During the optimization process, fminunc computes the gradient and the Hessian of
the function. We can obtain the gradient and the Hessian at the end of the minimization
process:

1 [x, fx , exitflag , output , grad , hess] = fminunc (@ rosenbrock ,
[-1, 2], options);

There are other options that we can set:

• MaxIterations: maximum number of iterations (default is 400);

• OptimalityTolerance: tolerance for f ′(x) = 0 (default is 10−6)

• StepTolerance: tolerance for the step size (default is 10−6)

• PlotFcn: plot the function value as it is optimized

• UseParallel: approximates the gradient in parallel

For example, with PlotFcn we can see the evolution of the optimization graphically:
1 plots = [" optimplotx ", " optimplotfval ", ...
2 " optimplotstepsize ", " optimplotfirstorderopt "];
3 options = optimoptions ('fminunc ', ...
4 'SpecifyObjectiveGradient ', true , ...
5 'Algorithm ', 'trust -region ', ...
6 'Display ', 'iter ', ...
7 'PlotFcn ', plots);
8 [x, fx , exitflag , output] = fminunc (@ rosenbrock , [-1, 2],

options);

Page 5

https://www.mathworks.com/help/optim/ug/fminunc.html?s_tid=doc_ta#butpb7p-exitflag

Econ890-01 Matlab Summer 2019

See Figure 3.

Figure 3: Function Value and Inputs During Minimization.

A complete list of options is available at the fminunc reference page.

3 Unconstrained Optimization (Direct Search)
The function fminsearch also solves an unconstrained minimization problem, but uses a
direct search method that does not rely on the gradient of the function being minimized.
Specifically, fminsearch uses the Nelder-Mead algorithm.

The usage of fminsearch is similar to fminunc:
1 [x, fx] = fminsearch (@ rosenbrock , [-1, 2]);

To specify extra options, however, we use the function optimset (it is different from
the one used with fminunc):

1 options = optimset ('Display ', 'iter ');
2 [x, fx , exitflag , output] = fminsearch (@ rosenbrock , [-1, 2],

options);

Notice that fminsearch does not return the gradient and hessian of the function at the
minimizer, since it does not use derivatives.

4 Constrained Optimization
The function fmincon solves the following constrained minimization problem:

minimize
x∈Rd

f(x)

subject to

c(x) ≤ 0
ceq(x) = 0
A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

Page 6

https://www.mathworks.com/help/optim/ug/fminunc.html?s_tid=doc_ta#butpb7p-options
https://www.mathworks.com/help/matlab/ref/fminsearch.html?s_tid=doc_ta
https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html
https://www.mathworks.com/help/matlab/ref/optimset.html
https://www.mathworks.com/help/optim/ug/fmincon.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

Where: f : Rd 7→ R, c : Rd 7→ Rk1 , ceq : Rd 7→ Rk2 , A ∈ Rk3×d and b ∈ Rk3×1,
Aeq ∈ Rk4×d and beq ∈ Rk4×1, and x, lb and ub are vectors of length d.

We can call fmincon using several different configurations, which we explore in the
next subsections.

4.1 Linear Inequality Constraint
Let’s minimize Rosenbrock’s function with the constraint that x1 + 2x2 ≤ 1:

1 %% Let 's minimize Rosenbrock 's function with an additional
2 % constraint
3 A = [1 2];
4 x0 = [-1; 2];
5 b = 1;
6 %% Visualize the graph of the function and the linear

constraint
7 x = linspace (-2, 2, 60);
8 y = linspace (-3, 3, 60);
9 [X, Y] = meshgrid (x, y);
10 Z = [X(:) Y(:)];
11 z = zeros(length(Z), 1);
12 for i = 1: length(Z)
13 z(i) = rosenbrock (Z(i, :));
14 end
15 z = reshape (z, length(y), length(x));
16 fig = surf(x, y, z);
17 fig. FaceAlpha = 0.8;
18 colormap cool;
19 hold on;
20 % add constraint
21 X1 = [2;2; -2; -2];
22 X2 = [-3; -0.5;3/2; -3];
23 fill(X1 , X2 , 'green ');
24 % actual minimum
25 scatter3 (1, 1, 0, 60, 'ro', 'filled ');
26 %% Minimize the function under the constraint
27 [x, fx] = fmincon (@ rosenbrock , x0 , A, b);
28 %% Add minimization result to figure
29 scatter3 (x(1) , x(2) , fx , 60, 'ko', 'filled ');
30 % add labels and legend
31 xlabel('x_1 ');
32 ylabel('x_2 ');
33 legend ([" Rosenbrock 's Function ", "Linear Constraint ", ...
34 "Global Minimum ", " Constrained Minimum "], ...
35 " Location ", " northwest ");

We can visualize the result of the constrained minimization in Figure 4 below.

Page 7

Econ890-01 Matlab Summer 2019

Figure 4: Minimization of the Rosenbrock’s Function under a Linear Constraint.

4.2 Linear Inequality and Equality Constraints
Let’s add a linear equality constraint:

1 %% Let 's minimize Rosenbrock 's function with two linear
constraints

2 % inequality constraint : x(1) + 2*x(1) <= 1
3 A = [1 2];
4 b = 1;
5 % equality constraint : 2*x(1) + x(2) = 1
6 Aeq = [2 1];
7 beq = 1;
8 %% Visualize function and constraints
9 x = linspace (-2, 2, 60); % x1
10 y = linspace (-3, 3, 60); % x2
11 [X, Y] = meshgrid (x, y);
12 Z = [X(:) Y(:)];
13 z = zeros(length(Z), 1);
14 for i = 1: length(Z)
15 z(i) = rosenbrock (Z(i, :));
16 end
17 z = reshape (z, length(y), length(x));
18 fig = surf(x, y, z);
19 fig. FaceAlpha = 0.8;
20 colormap cool;
21 hold on;
22 % add inequality constraint
23 X1 = [2;2; -2; -2];
24 X2 = [-3; -0.5;3/2; -3];
25 fill(X1 , X2 , 'green ');
26 % add equality constraint
27 plot(x, 1- 2.*x, 'k', 'LineWidth ', 2);
28 % actual minimum
29 scatter3 (1, 1, 0, 60, 'ro', 'filled ');

Page 8

Econ890-01 Matlab Summer 2019

30 %% Minimize the function under the constraint
31 x0 = [0; 0.5];
32 [x, fx] = fmincon (@ rosenbrock , x0 , A, b, Aeq , beq);
33 %% Add minimization result to figure
34 scatter3 (x(1) , x(2) , fx , 60, 'ko', 'filled ');
35 % add labels and legend
36 xlim ([-2, 2]);
37 ylim ([-3, 3]);
38 xlabel('x_1 ');
39 ylabel('x_2 ');
40 legend ([" Rosenbrock 's Function ", " Inequality Constraint ", ...
41 " Equality Constraint ", "Global Minimum ", ...
42 " Constrained Minimum "], " Location ", " northwest ");

We can visualize the result of the constrained minimization in Figure 5 below.

Figure 5: Minimization of the Rosenbrock’s Function under a Linear Inequality Constraint
and a Linear Equality Constraint.

4.3 Linear Equality Constraint
If we did not want to specify the linear inequality constraint, then we can pass an empty
matrix [] as the inputs for A and b:

1 %% Let 's minimize Rosenbrock 's function with a linear
equality constraint

2 % equality constraint : 2*x(1) + x(2) = 1
3 Aeq = [2 1];
4 beq = 1;
5 %% Visualize function and constraints
6 x = linspace (-2, 2, 60); % x1
7 y = linspace (-3, 3, 60); % x2
8 [X, Y] = meshgrid (x, y);
9 Z = [X(:) Y(:)];
10 z = zeros(length(Z), 1);
11 for i = 1: length(Z)
12 z(i) = rosenbrock (Z(i, :));

Page 9

Econ890-01 Matlab Summer 2019

13 end
14 z = reshape (z, length(y), length(x));
15 fig = surf(x, y, z);
16 fig. FaceAlpha = 0.8;
17 colormap cool;
18 hold on;
19 % add equality constraint
20 plot(x, 1- 2.*x, 'k', 'LineWidth ', 2);
21 % actual minimum
22 scatter3 (1, 1, 0, 60, 'ro', 'filled ');
23 %% Minimize the function under the constraint
24 x0 = [0.5; 0];
25 [x, fx] = fmincon (@ rosenbrock , x0 , [], [], Aeq , beq);
26 %% Add minimization result to figure
27 scatter3 (x(1) , x(2) , fx , 60, 'ko', 'filled ');
28 % add labels and legend
29 xlim ([-2, 2]);
30 ylim ([-3, 3]);
31 xlabel('x_1 ');
32 ylabel('x_2 ');
33 legend ([" Rosenbrock 's Function ", " Equality Constraint ", "

Global Minimum ", ...
34 " Constrained Minimum "], " Location ", " northwest ");

We can visualize the result of the constrained minimization in Figure 6 below.

Figure 6: Minimization of the Rosenbrock’s Function under a Linear Equality Constraint.

4.4 Bound Constraints
We now consider bound constraints: lb ≤ x ≤ ub.

1 %% Specify a function
2 f = @(x) (1+x(1) /(1+x(2)) - 3*x(1)*x(2) + x(2) *(1+x(1)));
3 %% Visualize f
4 x = linspace (-0.5, 1.5, 60); % x1
5 y = linspace (-0.5, 3, 60); % x2

Page 10

Econ890-01 Matlab Summer 2019

6 [X, Y] = meshgrid (x, y);
7 Z = [X(:) Y(:)];
8 z = zeros(length(Z), 1);
9 for i = 1: length(Z)
10 z(i) = f(Z(i, :));
11 end
12 z = reshape (z, length(y), length(x));
13 fig = surf(x, y, z);
14 hold on;
15 xlabel('x1');
16 ylabel('x2');
17 %% Define bound constraint
18 % positive values of x
19 lb = [0; 0];
20 ub = [1; 2];
21 %% Minimize function
22 x0 = [0.5 , 1];
23 [x, fx] = fmincon (f, x0 , [], [], [], [], lb , ub);
24 %% Visualize minima
25 scatter3 (x0 (1) , x0 (2) , f(x0), 60, 'ko', 'filled ');
26 scatter3 (x(1) , x(2) , fx , 60, 'ro', 'filled ');
27 %% Minimize function
28 x0 = x0 ./5;
29 [x, fx] = fmincon (f, x0 , [], [], [], [], lb , ub);
30 %% Visualize minima
31 scatter3 (x0 (1) , x0 (2) , f(x0), 60, 'ko', 'filled ');
32 scatter3 (x(1) , x(2) , fx , 60, 'ro', 'filled ');
33 legend ([" Graph of f", " Initial Guess", "Local Minimum ", ...
34 " Another Initial Guess", " Another Local Minimum "],

...
35 " Location ", " northwest ");

Figure 7 below displays the function and the local minima we found in the constrained
region.

Figure 7: Minimization of a Function Under Bound Constraints.

Page 11

Econ890-01 Matlab Summer 2019

We can find the global minima in this region by comparing the objective function
value at the two local minima.

4.5 Nonlinear Constraint
Let’s find the minimum of the Rosenbrock’s function when the domain is constrained
to a circle. First, we specify the nonlinear constraint by creating a new function. This
function must take an input x, and must have two outputs: c(x) and ceq(x). If the
nonlinear inequality constraint or the nonlinear equality constraint are not used, then
the function should simply output [].

Remember that a point (x, y) is in a circle centered at (a, b) with radius r if:

‖(x, y)− (a, b)‖ ≤ r

Now, fmincon considers the nonlinear constraint to be of the form c(x) ≤ 0. So we need
to convert the inequality above to be of that form. We can also write the inequality in
terms of squares instead of square-root, since computing the square of a number is faster
than computing its square-root:

‖(x, y)− (a, b)‖ ≤ r ⇐⇒ (x− a)2 + (y − b)2 ≤ r2

⇐⇒ (x− a)2 + (y − b)2 − r2 ≤ 0

We can now write this inequality in a function:
1 % in_circle .m
2 function [c, ceq] = in_circle (point , center , radius)
3 % in_cirlce returns a negative number if the point is in the

circle ,
4 % otherwise returns a positive number
5 c = sum ((point - center).^2) - radius ^2; % <= 0
6 ceq = []; % == 0

Now, we can minimize Rosenbrock’s function subject to this nonlinear constraint:
1 %% Minimize function
2 fun = @(x) (in_circle (x, [0.5 0.5] , 0.5));
3 x0 = [0.5 1];
4 [x_min , f_min] = fmincon (fun , x0 , [], [], [], [], [], [], fun

);
5 %% Visualize problem
6 x = linspace (-0.5, 1.5, 60); % x1
7 y = linspace (-0.5, 1.5, 60); % x2
8 [X, Y] = meshgrid (x, y);
9 Z = [X(:) Y(:)];
10 z = zeros(length(Z), 1);
11 for i = 1: length(Z)
12 z(i) = rosenbrock (Z(i, :));
13 end
14 z = reshape (z, length(y), length(x));
15 fig = surf(x, y, z);
16 fig. FaceAlpha = 0.6;

Page 12

Econ890-01 Matlab Summer 2019

17 colormap cool;
18 hold on;
19 r = rectangle ('Position ', [0 0 1 1], 'Curvature ', [1 1], ...
20 'FaceColor ', 'white ');
21 scatter3 (x0 (1) , x0 (2) , rosenbrock (x0), 120, 'ko', 'filled ');
22 scatter3 (x_min (1) , x_min (2) , f_min , 120, 'ro', 'filled ');
23 xlabel('x1');
24 ylabel('x2');
25 xlim ([-0.5 1.5]);
26 ylim ([-0.5 1.5]);
27 legend ([" Rosenbrock 's Function ", " Initial Guess", "Local

Minimum "], ...
28 'location ', 'northwest ');

We used the function rectangle to draw the circle. The optimization result is shown in
Figure 8.

Figure 8: Minimization of Rosenbrock’s Function Under a Nonlinear Constraint.

4.6 Options and Algorithms
There are five algorithm options for fmincon: interior-point (default), trust-region-reflective,
sqp, sqp-legacy and active-set. The links above lead to the descriptions of each al-
gorithm. The general reasoning for each of the algorithms is the following:

• Interior Point: Large-scale algorithm (uses sparse matrices, less memory). Con-
straints are satisfied at all times.

• Trust Region Reflective: Large-scale algorithm (uses sparse matrices, less memory).
Requires the gradient of the function. Can only have bound constraints or linear
equality constraints, but not both.

• SQP: Medium-scale algorithm (uses dense matrices, uses more memory, more accu-
rate). Constraints are satisfied at all times. The legacy version is slower and uses
more memory.

• Active Set: Medium-scale algorithm (uses dense matrices, uses more memory, more
accurate). Is able to take large steps. Can deal with non-smooth constraints.

Page 13

https://www.mathworks.com/help/matlab/ref/rectangle.html
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpd5f
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnpeek
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#bsgppl4
https://www.mathworks.com/help/optim/ug/constrained-nonlinear-optimization-algorithms.html#brnox01

Econ890-01 Matlab Summer 2019

We can choose the algorithm by setting options for fmincon using optimoptions.
1 % Minimize Rosenbrock 's on a unit circle
2 unit_circle = @(x) (in_circle (x, [0; 0], 1));
3 x0 = [0 ,0];
4 % Set options to display minimization progression
5 options = optimoptions ('fmincon ', 'Display ', 'iter ');
6
7 % Minimize with the default algorithm
8 options . Algorithm = 'interior -point ';
9 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,[] ,[] ,

unit_circle , options)
10
11 % Minimize with the sqp algorithm
12 options . Algorithm = 'sqp ';
13 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,[] ,[] ,

unit_circle , options)
14
15 % Minimize with the active -set algorithm
16 options . Algorithm = 'active -set ';
17 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,[] ,[] ,

unit_circle , options)
18
19 % Minimize with the trust -region - reflective algorithm
20 % will not work due to constraints (and gradient)
21 options . Algorithm = 'trust -region - reflective ';
22 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,[] ,[] ,

unit_circle , options)

4.7 Including the Gradient
To include the gradient we specify the objective function to return two outputs. The first
is the value of the function, and the second is the gradient of the function. We can then
specify the option SpecifyObjectiveGradient to be true:

1 % Minimize Rosenbrock 's function over positive values
2 lb = [0 0];
3 ub = [Inf Inf];
4 x0 = [3 3];
5 % Set options to display minimization progression
6 options = optimoptions ('fmincon ', 'Display ', 'iter ', ...
7 'SpecifyObjectiveGradient ', true);
8
9 % Minimize with the default algorithm
10 options . Algorithm = 'interior -point ';
11 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,lb ,ub ,[],

options)
12

Page 14

https://www.mathworks.com/help/optim/ug/optimoptions.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

13 % Minimize with the trust -region - reflective algorithm (
requires the

14 % gradient)
15 options . Algorithm = 'trust -region - reflective ';
16 [x_min , f_min] = fmincon (@ rosenbrock ,x0 ,[] ,[] ,[] ,[] ,lb ,ub ,[],

options)

5 Solving Nonlinear Equations
The function fsolve can be used to solve a system of nonlinear equations:

f1(x) = 0
f2(x) = 0

...
fn(x) = 0

where x is a vector and n ≥ 1. The function fsolve starts with an initial guess x0 and
attempts to find x such that all functions evaluate to zero.

Let’s solve a system of equations with fsolve. Consider the equations:e−ex1+x2 = x2(1 + x2
1)

x1 cosx2 + x2 sin x1 = 1
2

⇐⇒

e−ex1+x2 − x2(1 + x2
1) = 0

x1 cosx2 + x2 sin x1 − 1
2 = 0

We can write the system above as:f1(x) = 0
f2(x) = 0

where
f1(x) = e−ex1+x2 − x2(1 + x2

1)
f2(x) = x1 cosx2 + x2 sin x1 − 1

2

To use fsolve we need to write the system of equations in a function. The function
should output a vector, representing the output of each equation in the system:

1 % system2d .m
2 function f = system2d (x)
3 f1 = exp(-exp(sum(x))) - x(2) *(1+x(1) ^2);
4 f2 = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;
5 f = [f1; f2];

We can now call fsolve to attempt to solve the system:
1 % Solve system
2 x0 = [5; -5];
3 [x_root , fval_root] = fsolve (@ system2d , x0);
4 % Visualize system and solution
5 f1 = @(x, y) (exp(-exp(x + y)) -y*(1+x^2));
6 f2 = @(x, y) (x*cos(y) + y*sin(x) - 0.5);
7 fsurf(f1 , 'FaceColor ', 'red ', 'FaceAlpha ', 0.6);
8 hold on;
9 fsurf(f2 , 'FaceColor ', 'green ', 'FaceAlpha ', 0.6);

Page 15

https://www.mathworks.com/help/optim/ug/fsolve.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

10 scatter3 (x_root (1) , x_root (2) , 0, 400, 'ko', 'filled ');
11 xlabel('x1');
12 ylabel('x2');

We can visualize the solution of the system in Figure 9. Notice the use of fsurf to
plot the functions.

Figure 9: Solution of System of Nonlinear Equations.

We can display the progression of fsolve by specifying the Display option with the
function optimoptions:

1 options = optimoptions ('fsolve ', 'Display ', 'iter ');
2 x0 = [5; -5];
3 [x_root , fval_root] = fsolve (@ system2d , x0 , options);

It is possible to use fsolve with functions where the input is a matrix. For example,
to find the square-root of a matrix A, we could create the following system:

f(X) = X ∗X − A

We need to write the function above in a file:
1 % sqrtA.m
2 function X = sqrtA(X0 , A)
3 X = X0*X0 - A;
4 % function must return a vector
5 X = X(:);

We can now use fsolve to find the square-root of a matrix A:
1 % find the sqrt of A
2 A = eye (2);
3 X0 = rand (2);
4 X = fsolve (@(X) (sqrtA(X, A)), X0)

Observe that if a system has multiple solutions, fsolve will only find one.

Page 16

https://www.mathworks.com/help/matlab/ref/fsurf.html

Econ890-01 Matlab Summer 2019

6 Finding the Root of a Nonlinear Function
The function fzero can be used to find the root of a single nonlinear function. That
is, find the value x such that the nonlinear function f satisfies f(x) = 0. Like fsolve,
fzero will only find one root. The function fzero uses a method similar to the bisection
method, which requires the function f to have a change in sign. If f does not change
sign, then fsolve will not be able to find its root. For example, fsolve cannot find the
root of f(x) = x2.

The initial guess taken by fzero can be a scalar or a vector with two values. If it is a
scalar, say x0, then fzero tries to find another point x1 with the opposite sign of f(x0),
and then applies the bisection method to shrink the interval until a solution is reached. If
it is a vector, say

[
x0 x1

]
, then fzero checks that f(x0) and f(x1) have different signs,

and then applies the bisection method. However, it shows an error if the signs are not
different.

1 % visualize polynomial
2 fun = @(x) x.^3 - 2*x.^2 + 3*x - 10;
3 fplot(fun)
4 % find root from initial guess (scalar)
5 x_min = fsolve(fun , -5);
6 hold on;
7 scatter (x_min , fun(x_min), 'ko', 'filled ');
8 % find root from initial guess (vector)
9 x_min = fsolve(fun , [-5, 5]);
10 hold on;
11 scatter (x_min , fun(x_min), 'ro', 'filled ');

7 Assignment
Problem 1 (Conditional Maximum Likelihood Estimator) Consider the model:

Y = β0 + β1X + ε

where ε d∼ N (0, σ2). We can write the conditional density of Y |X as the density of a
normal (due to ε) with its mean shifted by β0 + β1X:

f{Y |X}(y) = 1√
2πσ2

e−
(y−(β0+β1X))2

2σ2

We can use this density to write the (conditional) likelihood given i.i.d. observations
{Zi ≡ (Yi, Xi)}ni=1:

L(β0, β1, σ;Z) = Πn
i=1f{Y |X}(y; β0, β1, σ)

Thus, we can write the (conditional) maximum likelihood estimator for β0, β1 and σ as:

(β̂0, β̂1, σ̂) = argmax
β0,β1,σ

n∑
i=1
−1

2 ln
(
2πσ2

)
− 1

2σ2 (yi − β0 − β1xi)2

Given appropriate values for β0 and β1, simulate 1000 observations for X from a nor-
mal distribution. Graph the likelihood function (or log-likelihood) given the observations.

Page 17

https://www.mathworks.com/help/matlab/ref/fzero.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

Problem 2 (continuation of previous problem) Using the simulated data from the pre-
vious exercise, estimate the parameters with the linreg_ols function. Now, estimate
the parameters with MLE. You can use fminunc or fminsearch to find the estimates.
Compare the results.

Problem 3 (continuation of previous problem) Compute the gradient of the log-likelihood
function. Use fminunc and the gradient of the log-likelihood function to estimate the
parameters via MLE. You can supply the option CheckGradients on a test-run to let
Matlab check if the gradient you supplied is similar to the gradient computed numerically
(good for checking if your code is correct).

Problem 4 (continuation of previous problem) We can also supply the Hessian to the
fminunc function. To do so, we add a third output (the Hessian matrix) to the file of the
function we are minimizing. Then, we set the option HessianFcn to ’objective’. Use
fminunc with the gradient and the Hessian of the log-likelihood function to estimate the
parameters via MLE.

Problem 5 (Probit) The Probit model (see Example 7.3 of Hayashi (2000) is used to
analyze data where the dependent variable is binary (Y ∈ {0, 1}). In this context, we can
write the conditional probability of Y as:P(Y = 1|X; θ) = Φ(X ′θ)

P(Y = 0|X; θ) = 1− Φ(X ′θ)

where Φ is the cdf of the standard normal distribution, X is a vector of independent
random variables and θ is a vector of unobserved parameters. It is possible to write the
conditional probability of Y in a single equation, since Y can only take binary values:

P(Y |X; θ) = Φ(X ′θ)Y (1− Φ(X ′θ))1−Y

Given i.i.d. observations {(yi, xi)}ni=1, we can write the (conditional) log-likelihood func-
tion for Z ≡ (Y,X) as:

l(θ;Z) =
n∑
i=1

yiln (Φ(x′iθ)) + (1− yi)ln (1− Φ(x′iθ))

Given appropriate values for θ, simulate 1000 observations for X from a normal distri-
bution. Graph the likelihood function (or log-likelihood) given the observations.

Problem 6 (continuation of previous problem) Estimate the parameters using MLE and
fminunc.

Problem 7 (Logit) The Logit model (see page 508 of Hayashi (2000)) is an alternative
to the Probit model when it comes to analyzing binary data. It can be argued that the
interpretation of the parameters is more direct in the case of the Logit model. We can
write the conditional probability of Y as:P(Y = 1|X; θ) = Λ(X ′θ)

P(Y = 0|X; θ) = 1− Λ(X ′θ)

Page 18

Econ890-01 Matlab Summer 2019

where Λ(v) = ev
1+ev is the cdf of the logistic distribution,X is a vector of independent

random variables and θ is a vector of unobserved parameters. The above is equivalent to:

P(Y |X; θ) = Λ(X ′θ)Y (1− Λ(X ′θ))1−Y

Given i.i.d. observations {(yi, xi)}ni=1, we can write the (conditional) log-likelihood func-
tion for Z ≡ (Y,X) as:

l(θ;Z) =
n∑
i=1

yiln (Λ(x′iθ)) + (1− yi)ln (1− Λ(x′iθ))

Given appropriate values for θ, simulate 1000 observations for X from a normal distri-
bution. Graph the likelihood function (or log-likelihood) given the observations.

Problem 8 (continuation of previous problem) Estimate the parameters using MLE and
fminunc.

Problem 9 (continuation of previous problem) (Optional) Derive the gradient and hes-
sian of the log-likelihood in this case. (Hint: Equation (8.1.6) in Hayashi (2000)) Estimate
the parameters using MLE and fminunc, while supplying the gradient and hessian.

Problem 10 (Dependent Observations) Consider a Gaussian AR(1) process (see page
546 of Hayashi (2000)):

yt = α + βyt−1 + εt

where the εt d∼ N (0, σ2) and are i.i.d, and |β| < 1. Simulate 1000 observations given an
appropriate initial value for y0.

The log-likelihood in this case is given by:

l(θ;Z) = 1
n

n∑
t=1

[
−1

2 ln (2π)− 1
2 ln

(
σ2
)
− 1

2σ2 (yt − α− βyt−1)2
]

+

+ 1
n

−1
2 ln (2π)− 1

2 ln
(

σ2

1− β2

)
−

(y0 − α
1−β)2

2 σ2

1−β2

Implement the log-likelihood and estimate the parameters via MLE.

Problem 11 (Model Selection) We now consider the estimation of a linear regression via
ordinary least-squares with the addition of a penalization term. The penalization term is
a function of the magnitude of the parameters of the model. When we minimize the
squared errors taking into account the penalization, some of the parameter estimates can
be zero, leading to the estimation of a simpler model. For a good overview, read this page
on Lasso.

Consider the model:

Y = β0 +
∑
i=20

βiXi + ε

where ε d∼ N (0, σ2), and each of the Xi’s are drawn from a normal distribution.
Fix the values of the βi’s, but let β1 = β2 = 0. Simulate the data for {(Yi, Xi,1, . . . , Xi,20)}ni=1,

with n = 1000. Estimate the parameters via least-squares with linreg_ols.

Page 19

https://en.wikipedia.org/wiki/Lasso_(statistics)

Econ890-01 Matlab Summer 2019

Problem 12 (continuation of previous problem) Estimate the parameters by minimizing
the squared errors with the penalization term added:

min
β0,β1,...,β20

1
n

n∑
i=1

(yi − β0 − β1xi,1 − . . .− β20xi,20)2

subject to
20∑
i=0
|β|i ≤ λ

for some λ > 0. Use the simulated data and the function fmincon in the estimation.

Problem 13 (continuation of previous problem) What happens to the parameters when
n increases from 1000 to 10, 000 and to 100, 000?

Problem 14 (continuation of previous problem) What happens to the final squared-
errors of the regression when λ increases?

Problem 15 (continuation of previous problem) (Optional) Consider the Lagrangian
form of the problem:

min
β0,β1,...,β20

1
n

n∑
i=1

(yi − β0 − β1xi,1 − . . .− β20xi,20)2 + λ
20∑
i=0
|βi|

The constrained problem was written as an unconstrained problem, and the parameters
can now be estimated with fminunc. Estimate the parameters and repeat the analysis
from the previous two problems.

Page 20

Econ890-01 Matlab Summer 2019

References
Arora, Rajesh Kumar (2015). Optimization: algorithms and applications. Chapman and

Hall/CRC. url: https://doi.org/10.1201/b18469.

Hayashi, F. (2000). Econometrics. Princeton University Press. isbn: 9780691010182. url:
https://books.google.com/books?id=QyIW8WUIyzcC.

Page 21

https://doi.org/10.1201/b18469
https://books.google.com/books?id=QyIW8WUIyzcC

	The Optimization Problem
	Unconstrained Optimization (Gradient Based)
	Unconstrained Optimization (Direct Search)
	Constrained Optimization
	Linear Inequality Constraint
	Linear Inequality and Equality Constraints
	Linear Equality Constraint
	Bound Constraints
	Nonlinear Constraint
	Options and Algorithms
	Including the Gradient

	Solving Nonlinear Equations
	Finding the Root of a Nonlinear Function
	Assignment

