
Econ890-01 Matlab Guilherme Salomé

Numerical Methods and Symbolic Math

Consider a simple economic model of consumption, where an agent decides between
consumption and investment in capital while maximizing his utility:

max
∞∑
t=0

βtU(ct)

subject to
ct = kt − kt+1,∀t >= 0
k0 > 0

where ct is the time t consumption, kt is the return of the capital invested at t − 1 and
kt+1 is the investment choice at time t. In this simple model there is no rate of return in
capital, nor depreciation.

We can transform this problem into a recursive problem using Bellman’s equation:

V (k) =max
k′

U(c) + βV (k′)

s.t.: c = k − k′

And we wish to find a solution for the optimal c and k′ given the previous investment k:

c = gc(k)
k′ = gk(k)

We can find the optimal policies gc and gk by solving the Bellman equation. Solving the
problem requires either approximating the value function or obtaining the Euler equation
and then approximating c. In either case, we need to approximate functions to solve the
problem. We can approximate functions either locally, around a specific point, or globally,
over the entire domain of the function.

This lecture discusses methods for approximating functions and how to use them in
Matlab. If we also consider a economic model of consumption where there is uncertainty
regarding future states of the economy, then we will notice that to solve the maximiza-
tion problem we will need to integrate functions. Therefore, this lecture also discusses
methods for integrating functions and the implementations available in Matlab. We will
also discuss the symbolic math capabilities of Matlab, which can help with deriving the
equations we need to approximate.
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1 Approximating Functions
Given a function f we want to approximate it by a finite number n of basis functions
{pk}nk=1. We need to choose weights such that:

f(x) ≈ β1p1(x) + β2p2(x) + · · ·+ βnpn(x)

=
(
p1(x) p2(x) · · · pn(x)

)
︸ ︷︷ ︸

p(x)′


β1
β2
...
βn


︸ ︷︷ ︸

β

= p(x)′β

If we have a set of points {xi}di=1 where we know the value of f , then we can write:
f(x1)
f(x2)

...
f(xd)


︸ ︷︷ ︸

F

≈


p1(x1) p2(x1) · · · pn(x1)
p1(x2) p2(x2) · · · pn(x2)

...
p1(xd) p2(xd) · · · pn(xd)


︸ ︷︷ ︸

P


β1
β2
...
βd


︸ ︷︷ ︸

β

(1)

If the number of basis functions and the number of points is the same, that is n = d,
then there is an exact solution for β if P is invertible: β = P−1F .

If we have more points than basis functions, then we can compute a least-squares
approximation to f :

β̂ ≡ argmin
β∈Rn

d∑
i=1

(f(xi)− p(xi)′β)2 (2)

We know that the "OLS" solution is:

β̂ = (P ′P )−P ′F (3)

Notice the use of a generalized inverse in (P ′P )−. This is necessary because depending
on choice of the basis function, we might have a column of zeros in P (this happens
with splines when there are more knots relative to points). Now, the function that
approximates f is:

f̂(x) ≡ p(x)′β̂ (4)

This approximating function can be computed given a choice of basis functions {pk}nk=1
and a collection of data points {xi}di=1.

As an aside, consider the case where the original function we wanted to estimate was
a conditional mean, f(x) = E[Y |X = x]. If we have i.i.d. observations of f and x, then
the f̂ above is exactly the non-parametric Sieves estimator for the conditional mean. In
this case, there is theory justifying the consistency and asymptotic normality of f̂ .

Next, we discuss the possible choices for basis functions.
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1.1 Jacobi Polynomials
The Jacobi polynomials are a family of orthogonal polynomials defined over the interval
[−1, 1]. Let’s denote the family of Jacobi polynomials by P , and the members of this
family by P (α,β)

n (to be defined later), where n denotes the highest degree of the polyno-
mial. The Jacobi polynomials are parameterized by α and β, which satisfy α > −1 and
β > −1.

We say that a family of polynomials is orthogonal if any two of its members are
orthogonal to each other under some inner product. In the case of Jacobi polynomials,
there is a weight function w such that ∀P (α,β)

n , P (α,β)
m ∈ P :∫

w(x)P (α,β)
n (x)P (α,β)

m (x)dx = 0 if n 6= m

The Jacobi polynomials are defined as (see Equation 22.3.1 in Abramowitz and Setgun
(1964)):

P (α,β)
n = 1

2n
n∑

m=0

(
n+ α

m

)(
n+ β

n−m

)
(x− 1)n−m(x+ 1)m

These polynomials are orthogonal with respect to the weight function:

w(α,β) ≡ (1− x)α(1 + x)β

The Jacobi polynomials are available in Matlab’s Symbolic Math Toolbox via the
function jacobiP. This function evaluates the Jacobi polynomial of degree n and param-
eters (α, β) at a point x. We can plot the functions to get a sense of their shape and of
the influence of the parameters α and β:

1 % read documentation
2 help jacobiP
3 % create a jacobi polynomial for different degrees
4 alpha = 1;
5 beta = 1;
6 jacobi = @(k, x) jacobiP (k, alpha , beta , x);
7 % graph a few of the polynomials
8 fig = figure;
9 hold on;
10 for k = 1:5
11 fplot (@(x) jacobi(k, x), [-1, 1]);
12 end
13 % compare changes in alpha
14 figure;
15 hold on;
16 for alpha = [-0.5, 0, 0.5, 1, 2]
17 jp = @(x) jacobiP (3, alpha , 1, x);
18 fplot(jp , [-1, 1]);
19 end
20 legend (["$\ alpha = -0.5$" , "$\ alpha =0$" , "$\ alpha =0.5$" , "$\

alpha =1$" , ...
21 "$\ alpha =2$"] , 'Interpreter ', 'latex ', ...
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22 'location ', 'southeastoutside ');
23 % compare changes in beta
24 figure;
25 hold on;
26 for beta = [-0.5, 0, 0.5, 1, 2]
27 jp = @(x) jacobiP (3, 1, beta , x);
28 fplot(jp , [-1, 1]);
29 end
30 legend (["$\ beta = -0.5$" , "$\ beta =0$" , "$\ beta =0.5$" , "$\ beta

=1$" , ...
31 "$\ beta =2$"] , 'Interpreter ', 'latex ', ...
32 'location ', 'southeastoutside ');

We can verify that the Jacobi polynomials are indeed orthogonal:
1 alpha = 1;
2 beta = 1;
3 jacobi = @(k, x) jacobiP (k, alpha , beta , x);
4 % verify orthogonality
5 w = @(x) (1-x).^ alpha .*(1+x).^ beta;
6 integral (@(x) (w(x).* jacobi (2, x).* jacobi (4, x)), -1, 1)
7 % what about orthonormality ?
8 integral (@(x) (w(x).* jacobi (2, x).* jacobi (2, x)), -1, 1)

1.1.1 Expanding the Domain

The Jacobi polynomials are initially defined over [−1, 1], but we can extend the domain
to some compact interval [a, b] via a linear change of variables:

y = −1 + 2x− a
b− a

In this case, we can write the polynomials as:

P̃
(α,β)
k (x) = P

(α,β)
k

(
−1 + 2x− a

b− a

)
These polynomials are now orthogonal with respect to a different weight function:

w̃(α,β) = (b− x)α(x− a)β

Indeed:
1 % extend jacobi polynomial to [a, b]
2 alpha = 1;
3 beta = 1;
4 a = 0;
5 b = 100;
6 jacobi = @(k, x) jacobiP (k, alpha , beta , -1+2.*(x-a)./(b-a));
7 % modified weight function
8 w = @(x) (b-x).^ alpha .*(x-a).^ beta;
9 % orthogonality
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10 integral (@(x) (w(x).* jacobi (2, x).* jacobi (3, x)), -1, 1) %
wrong domain

11 integral (@(x) (w(x).* jacobi (2, x).* jacobi (3, x)), a, b)

1.1.2 Orthonormal Jacobi Polynomials

It is also possible to make the Jacobi polynomials orthonormal, instead of just orthogonal.
We just need to scale the polynomials by a constant that depends on the degree of the
polynomial, on the parameters α and β, and on the length of the domain.

We can define the orthonormal Jacobi polynomials as:

P̃
(α,β)
k (x) ≡ c(α,β)(k)P (α,β)

k

(
−1 + 2x− a

b− a

)

c(α,β)(k) ≡
( 1
b− a

)α+β+1
2

√√√√(2k + α + β + 1)Γ(k + 1)Γ(k + α + β + 1)
Γ(k + α + 1)Γ(k + β + 1)

Where Γ is the Gamma function, which is available in Matlab via the function gamma.
These polynomials are orthonormal with respect to the weight function:

w̃(α,β) = (b− x)α(x− a)β

We can verify the orthonormality of the Jacobi polynomials defined by P̃ (α,β)
k (x):

1 a = 0;
2 b = 10;
3 alpha = 1;
4 beta = 1;
5 % define weight function
6 w = @(x) ((b-x).^ alpha).*((x-a).^ beta);
7 % define scaling constant
8 c = @(k) ((1/(b-a))^(( alpha+beta +1) /2)) .*((((2.* k+alpha+beta

+1) .* gamma(k+1) .* gamma(k+alpha+beta +1))./( gamma(k+alpha +1)
.* gamma(k+beta +1))).^0.5);

9 % define orthonormal jacobi function
10 jacobi = @(k, x) (c(k).* jacobiP (k, alpha , beta , -1 + 2.*(x-a)

./(b-a)));
11 % visualize
12 fig = figure;
13 hold on;
14 for k = 1:5
15 fplot (@(x) jacobi(k, x), [a, b]);
16 end
17 % check orthonormality
18 integral (@(x) (w(x).* jacobi (2, x).* jacobi (3, x)), a, b) % 0
19 integral (@(x) (w(x).* jacobi (2, x).* jacobi (2, x)), a, b) % 1
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1.1.3 Special Case: Legendre Polynomials

The Legendre polynomials are special cases of Jacobi polynomials. We can obtain Leg-
endre polynomials by setting α = β = 0. In this case we have:

P
(0,0)
k (x) = 1

2k
k∑

m=0

(
k

m

)2

(x− 1)k−m(x+ 1)m

c(0,0) =
√

2k + 1
b− a

Lk(x) ≡ P̃
(0,0)
k (x) = c(0,0)(k)P (0,0)

k

(
−1 + 2x− a

b− a

)
Notice that the weight function for the Legendre polynomials is simply 1.

The Legendre polynomials can also be computed recursively:

P
(0,0)
0 (x) = 1
P

(0,0)
1 (x) = x

P
(0,0)
k (x) =

(
x · 2k − 1

k

)
P

(0,0)
k−1 (x) +

(
k − 1
k

)
P

(0,0)
k−2 (x)

Notice that the recursion is for the orthogonal Legendre polynomials defined over [−1, 1].
We can extend the recursion to the orthonormal Legendre polynomials by simply multi-
plying the P (0,0)

k above by the scaling constant c(0,0)(k).
We can obtain the Legendre polynomials in Matlab via the function legendreP. This

function is similar to jacobiP and evaluates the Legendre polynomial of degree n at the
point x.

1 % define interval [a, b]
2 a = 0;
3 b = 10;
4 % define scaling constant
5 c = @(k) ((2.*k+1) ./(b-a)).^0.5;
6 % define orthonormal legendre polynomials
7 lp = @(k, x) c(k).* legendreP (k, -1 + 2.*(x-a)./(b-a));
8 % check orthonormality (good for catching bugs)
9 l1 = @(x) lp(1, x);
10 l2 = @(x) lp(2, x);
11 integral (@(x) l1(x).*l2(x), a, b) % 0
12 integral (@(x) l2(x).*l2(x), a, b) % 1

Let’s visualize the first few Legendre polynomials:
1 a = -1;
2 b = 1;
3 % define scaling constant
4 c = @(k) ((2.*k+1) ./(b-a)).^0.5;
5 % define orthonormal legendre polynomials
6 lp = @(k, x) c(k).* legendreP (k, -1 + 2.*(x-a)./(b-a));
7 % visualize the basis
8 f = figure;
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9 for k = 1:6
10 subplot (2, 3, k)
11 fplot (@(x) lp(k, x), [a b]);
12 grid on;
13 legend(strcat ("$ L_", string(k), "(x)$") , 'Interpreter ', '

latex ');
14 end

Figure 1 displays the orthonormal Legendre polynomials.

Figure 1: Orthonomal Legendre Polynomials.

1.1.4 Special Case: Chebyshev Polynomials

The Chebyshev polynomials are also a special case of the Jacobi polynomials. There are
two families of Chebyshev polynomials depending on the values of α and β. If we set
α = β = −1

2 , then we get the Chebyshev polynomials of the first kind, denoted by Tk(x).
If we set α = β = 1

2 , then we get the Chebyshev polynomials of the second kind, denoted
by Uk(x).

These polynomials can be computed recursively. For the first kind, we have:

T0(x) ≡ P
(−0.5,−0.5)
0 = 1

T1(x) ≡ P
(−0.5,−0.5)
1 = x

Tk(x) ≡ 2xTk−1(x)− Tk−2(x)

For the second kind, we have:

U0(x) ≡ P
(0.5,0.5)
0 = 1

U1(x) ≡ P
(0.5,0.5)
1 = 2x

Uk(x) ≡ 2xUk−1(x)− Uk−2(x)

The Chebyshev polynomials are available in the functions chebyshevT (first kind)
and chebyshevU (second kind).

1 a = -1;
2 b = 1;
3 % define weight function
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4 wT = @(x) ((b-x).*(x-a)).^( -0.5);
5 % orthogonality of chebyshev polynomials
6 integral (@(x) wT(x).* chebyshevT (2, x).* chebyshevT (3, x), a, b

)
7 integral (@(x) wT(x).* chebyshevT (3, x).* chebyshevT (3, x), a, b

)
8
9 % define constant for orthonormality
10 cT = @(k) (2.*k.* gamma(k+1) .* gamma(k)./( gamma(k+0.5) .* gamma(k

+0.5))) .^(0.5) ;
11 % define orthonormal chebyshev polynomials
12 orthoC = @(k, x) cT(k).* jacobiP (k, -0.5, -0.5, -1 + 2.*(x-a)

./(b-a));
13 % orthonormality
14 integral (@(x) wT(x).* orthoC (2, x).* orthoC (3, x), a, b)
15 integral (@(x) wT(x).* orthoC (2, x).* orthoC (2, x), a, b)

Let’s visualize the first few orthonormal Chebyshev (first kind) polynomials:
1 f = figure;
2 for k = 1:6
3 subplot (2, 3, k)
4 fplot (@(x) orthoC(k, x), [a b]);
5 grid on;
6 legend(strcat ("$ T_", string(k), "(x)$") , 'Interpreter ', '

latex ');
7 end

Figure 2 displays the orthonormal Legendre polynomials.

Figure 2: Orthonomal Chebyshev Polynomials (first kind).

1.1.5 Example

Let’s approximate the logistic function:

f(x) = 1
1 + e−x
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To approximate f , we need to choose a basis of polynomials. In this example, we will use
the orthonormal Legendre polynomials. We also need to compute the generalized inverse
of the matrix P ′P . In Matlab, the generalized inverse (Moore-Penrose) of a matrix can
be computed with the function pinv.

1 % consider the logistic function
2 f = @(x) 1./(1+ exp(-x));
3 % consider 5 points
4 x = linspace (-5, 5, 5) ';
5 % select a basis of polynomials : orthonormal Legendre

polynomials
6 % use 2 polynomials
7 c = @(k) ((2.*k+1) ./(b-a)).^0.5;
8 p = @(x) [c(0) .* legendreP (0, x) c(1) .* legendreP (1, x)];
9 % visualize basis
10 fplot(p, [-5 5]);
11 % compute the matrices F, P and the generalized inverse of P'

P
12 F = f(x);
13 P = p(x);
14 beta = pinv(P'*P)*P'*F;
15 % approximation for the function f
16 fhat = @(x) p(x)*beta;
17 % compare original to approximation
18 fplot(f);
19 hold on;
20 fplot(fhat);

We can make the approximation more precise by increasing the number of polynomi-
als.

1 % use 4 polynomials
2 p = @(x) [c(0) .* legendreP (0, x) c(1) .* legendreP (1, x) ...
3 c(2) .* legendreP (2, x) c(3) .* legendreP (3, x)];
4 F = f(x);
5 P = p(x);
6 beta = pinv(P'*P)*P'*F;
7 % approximation for the function f
8 fhat = @(x) p(x)*beta;
9 % compare original to approximation
10 fplot(f);
11 hold on;
12 fplot(fhat);

At this point there are a few observations to be made. First, coding the polynomials
by hand is surprisingly hard, since it is quite easy to make mistakes but hard to debug. If
you ever need to do so, the orthogonality and orthonomality conditions are useful to check
if everything is correct. Second, the approximation of continuous functions over compacts
is justified by Jackson’s theorems. Third, better approximations require a higher number
of basis functions. Fourth, to approximate more complex functions you need a higher
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number of (x, f(x)) observations.

1.2 Hermite Polynomials
The Jacobi polynomials are defined to be orthogonal on a compact interval. The moti-
vation for Hermite polynomials is to find a family of polynomials that is orthogonal on
the real line. We can define Hermite polynomials recursively. Let Hk denote the Hermite
polynomial of order k, then:

H0(x) ≡ 1
H1(x) ≡ 2x
Hk(x) ≡ 2xHk−1(x)− 2(k − 1)Hk−2(x)

The Hermite polynomials are orthogonal on the real line with respect to the weight
function:

w(x) = e−x2

In Matlab, Hermite polynomials can be computed with the function hemiteH:
1 % visualize
2 figure;
3 hold on;
4 for k = 3:5
5 fplot (@(x) hermiteH (k, x));
6 end
7 % weight function
8 w = @(x) exp(-x.^2);
9 % verify orthogonality
10 integral (@(x) w(x).* hermiteH (2, x).* hermiteH (1, x), -Inf , Inf

)
11 integral (@(x) w(x).* hermiteH (2, x).* hermiteH (2, x), -Inf , Inf

)

It is possible to show that: ∫ ∞
−∞

w(x)Hk(x)Hk(x)dx = 2kk!
√
π

Thus, we can define Hermite polynomials that are orthonormal and with weight function
w(x) = 1, by defining:

H̃k(x) =

√√√√ w(x)
2kk!
√
π
Hk(x)

= (2kk!
√
π)− 1

2 e−x
2

2 Hk(x)

The family of polynomials
{
H̃k : k ∈ N ∪ {0}

}
is orthonormal.

1 % build the orthonormal hermite polynomials
2 orthoH = @(k, x) hermiteH (k, x)./((2^k* factorial (k)*sqrt(pi)

.* exp(x.^2)) .^(0.5) );
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3 % verify orthonormality (good way to debug)
4 integral (@(x) orthoH (2, x).* orthoH (3, x), -Inf , Inf)
5 integral (@(x) orthoH (3, x).* orthoH (3, x), -Inf , Inf)

Let’s visualize the first few orthonormal Hermite polynomials:
1 f = figure;
2 for k = 1:6
3 subplot (2, 3, k)
4 fplot (@(x) orthoH(k, x), [-5 5]);
5 grid on;
6 legend(strcat ("$ H_", string(k), "(x)$") , 'Interpreter ', '

latex ');
7 end

Figure 3 displays the first few orthonormal Hermite polynomials.

Figure 3: Orthonomal Hermite Polynomials.

1.2.1 Example

Let’s approximate the density of the Cauchy distribution:

f(x;x0, γ) = 1

πγ
[
1 +

(
x−x0
γ

)2
]

To approximate f , we need to choose a basis of polynomials. In this example, we will
use the orthonormal Hermite polynomials.

1 % consider the cauchy density
2 x0 = -2;
3 gamma = 1;
4 f = @(x) 1./(( pi*gamma)*[1+((x-x0)/gamma).^2]);
5 % consider 5 points
6 x = linspace (-5, 5, 5) ';
7 % select a basis of polynomials : orthonormal Hermite

polynomials
8 % use 2 polynomials
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9 p = @(x) [orthoH (0, x) orthoH (1, x)];
10 % visualize basis
11 fplot(p, [-5 5]);
12 % compute the matrices F, P and the generalized inverse of P'

P
13 F = f(x);
14 P = p(x);
15 beta = pinv(P'*P)*P'*F;
16 % approximation for the function f
17 fhat = @(x) p(x)*beta;
18 % compare original to approximation
19 fplot(f);
20 hold on;
21 fplot(fhat);
22 grid on;
23 legend (["f", "$\ hat{f}$"] , 'interpreter ', 'latex ');

To improve the approximation, we need more observations of the function we want to
approximate and to increase the number of basis polynomials.

1 x = linspace (-5, 5, 1000) ';
2 % use 4 polynomials
3 p = @(x) [orthoH (0, x) orthoH (1, x) orthoH (2, x) ...
4 orthoH (3, x) orthoH (4, x) orthoH (5, x) ...
5 orthoH (6, x) orthoH (7, x) orthoH (8, x)];
6 F = f(x);
7 P = p(x);
8 beta = pinv(P'*P)*P'*F;
9 % approximation for the function f
10 fhat = @(x) p(x)*beta;
11 % compare original to approximation
12 fplot(f, [-5 5]);
13 hold on;
14 plot(x, fhat(x));
15 grid on;
16 legend (["$f$", "$\ hat{f}$"] , 'interpreter ', 'latex ');

1.3 Laguerre Polynomials
The Laguerre polynomials form a class of orthonormal polynomials on the non-negative
real numbers, with the weight function w(x) = e−x. These polynomials can be defined
recursively:

L0(x) ≡ 1
L1(x) ≡ 1− x

Lk(x) ≡ (2k − 1− x)Lk−1(x)− (k − 1)Lk−2(x)
k

The function laguerreL computes the Laguerre polynomial of order k at a point x:

Page 12

https://en.wikipedia.org/wiki/Laguerre_polynomials
https://www.mathworks.com/help/symbolic/laguerrel.html


Econ890-01 Matlab Summer 2019

1 % weight function
2 w = @(x) exp(-x);
3 % orthonormality
4 integral (@(x) w(x).* laguerreL (3, x).* laguerreL (2, x), 0, Inf)
5 integral (@(x) w(x).* laguerreL (3, x).* laguerreL (3, x), 0, Inf)
6 % orthonormal on the non - negative numbers with w(x) = 1
7 orthoL = @(k, x) laguerreL (k, x).*w(x).^0.5;
8 integral (@(x) orthoL (3, x).* orthoL (2, x), 0, Inf)
9 integral (@(x) orthoL (3, x).* orthoL (3, x), 0, Inf)

Let’s visualize the first few orthonormal Laguerre polynomials:
1 % visualize
2 figure;
3 for k = 1:6
4 subplot (2, 3, k);
5 fplot (@(x) orthoL(k, x), [0 10]);
6 grid on;
7 legend(strcat ("$ L_", string(k), "(x)$") , 'Interpreter ', '

latex ');
8 end

Figure 4 displays the first few orthonormal Laguerre polynomials.

Figure 4: Orthonomal Laguerre Polynomials.

1.3.1 Example

Let’s approximate the density of a Chi-squared distribution:

f(x, v) ≡


x
k
2−1e−

x
2

2
k
2 Γ( k2 )

, if x > 0

0, otherwise

where v denotes the degrees of freedom of the distribution (also its mean in this case). We
can use the Matlab function chi2pdf to evaluate the density. We will use the Laguerre
polynomials to approximate the density, since the density of a Chi-squared is defined for
non-negative numbers.
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1 % Chi - squared density with 3 degrees of freedom
2 f = @(x) chi2pdf (x, 3);
3 % Create orthonormal Laguerre polynomials
4 w = @(x) exp(-x);
5 orthoL = @(k, x) laguerreL (k, x).*w(x).^0.5;
6 p = @(x) [orthoL (0, x) orthoL (1, x) orthoL (2, x)];
7 % Approximate function
8 x = [0:5] ';
9 beta = pinv(p(x) '*p(x))*p(x) '*f(x);
10 fhat = @(x) p(x)*beta;
11 % Visualize
12 fplot(f, [0 10]);
13 hold on;
14 fplot(fhat , [0 10]);
15 grid on;
16 legend (["Chi - squared ", " Approximation "]);

1.4 Piecewise Polynomials (Splines)
Polynomials are useful to approximate continuous functions, however the approximations
often oscillate wildly. These oscillations are more apparent at the tails of the function we
are approximating.

Consider the approximation of a simple function f(x) = 1
1+x2 over the interval [−5, 5]

using polynomials. The function we want to approximate is infinitely differentiable, but
the approximation by polynomials will incur in a wild oscillation near the tails of the
function. This example is known as Runge’s example.

1 % Runge 's example : continuous function on interval [-5, 5]
2 f = @(x) 1./(1+x.^2);
3 fplot(f, [-5 5]);
4 % Legrende polynomials
5 a = -5;
6 b = 5;
7 c = @(k) ((2.*k+1) ./(b-a)).^0.5;
8 lp = @(k, x) c(k).* legendreP (k, -1 + 2.*(x-a)./(b-a));
9 % Approximation using 11 points
10 x = [ -5:5] ';
11 p = @(x) [lp(0, x) lp(1, x) lp(2, x) lp(3, x) lp(4, x) lp(5,

x) ...
12 lp(6, x) lp(7, x) lp(8, x) lp(9, x) lp(10, x)];
13 beta = pinv(p(x) '*p(x))*p(x) '*f(x);
14 fhat = @(x) p(x)*beta;
15 % Visualize
16 hold on;
17 plot( linspace (-5, 5) ', fhat( linspace (-5, 5) '));
18 legend ([" Original Function ", " Approximation "]);
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Figure 5 displays Runge’s example. Notice that the approximation works well around
zero, but gets increasingly worse as we move towards the ends of the intervals.

Figure 5: Runge’s Example.

The idea of piecewise polynomials is that instead of using a single polynomial to ap-
proximate a function, we could use various different polynomials to approximate different
parts of the function. We say that a function s : [a, b] 7→ R is a piecewise polynomial
of degree k if:

• The function s is continuous over [a, b];

• There exists a finite number n+1 of points {ξi}n+1
i=1 , with a = ξ0 < ξ1 < · · · < ξn = b,

where s is a polynomial of degree at most k on each of the intervals [ξi−1, ξi], i =
1, 2, . . . , n.

That is, s is a continuous function, but restricted to each interval it is also a polynomial
of degree at most k. The points ξi are called knots. If the function s is differentiable
up to its degree k minus 1, then we say it is a spline function of degree k. A spline
is a piecewise polynomial that is as smooth as possible, without becoming a regular
polynomial.

There are various functions that are splines. One of the simplest is the linear spline.
Given a set of points {(x1, y1), · · · , (xm, ym)}, where x1 = a and xm = b, we can define s
on each of the intervals [xi, xi+1] by:

s(x) ≡ (xi+1 − x)y + (x− xi)yi+1

xi+1 − xi
, x ∈ [xi, xi+1]

The function s is defined as a sequence of lines connecting the intervals. Notice that the
function is continuous, of degree k = 1, but not differentiable.

We will focus the discussion on a type of splines known as B-splines. The idea of B-
splines is to write s as a linear combination of various polynomials of degree k, denoted
by Bk

i :

s(x) =
∑
i

βiB
k
i (x) where x ∈ [a, b]

Each of the Bk
i polynomials satisfy the property that they are nonzero only on a small

interval, but are zero on the majority of [a, b]. The subscript i denotes the interval [ξi, ξi+1]
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over which Bk
i is nonzero. The idea is to limit the impact of the polynomials on intervals

far from where they are nonzero. An additional benefit is that B-splines incur in fewer
calculations than other splines.

We can define the Bk
i polynomials by:

Bk
i (x) =

i+k+1∑
j=i

dj(x− ξj)k+

dj =
i+k+1∏
l=i,l 6=j

1
ξl − ξj

Where (a)+ ≡ max(a, 0), and the terms (x−ξj)k+ are known as truncated power functions.
The subscript i indicates the interval [ξi, ξi+1] over which the polynomial Bk

i is nonzero.
However, the polynomial Bk

i is also nonzero over a slightly larger interval that extends
after ξi+1. This is necessary so that the resulting function is continuous. The order of the
polynomial k dictates how much longer the polynomial is extended. If the order is k = 1,
then the polynomial extends over one more knot, that is, B1

i is nonzero on the interval
[ξi, ξi+2]. If the order is k = 2, then the polynomial extends over two more knots, that is,
B2
i is nonzero on the interval [ξi, ξi+3]. And so on for higher orders. The coefficients dj

are computed so that the polynomial Bk
i is zero outside the interval [ξi, ξi+k+1].

The polynomials Bk
i are created for each of the knots ξi, for i = 0, 1, 2, · · · , n. Notice

that when we are at the final knots, we would need more points to the right of ξn to
compute the coefficients dj. In practice, we may not be able to generate these additional
knots, so we need to truncate some of the coefficients to zero to generate the last few Bk

i .
We can code B-splines in Matlab:

1 % splineB .m
2 function b = splineB (knots , i, k)
3 parser = inputParser ;
4 addRequired (parser , 'knots ', @(x) size(x, 1) == 1 || size(x,

2) == 1);
5 addRequired (parser , 'i', @(i) mod(i, 1) == 0 && i >= 1);
6 addRequired (parser , 'k', @(k) mod(k, 1) == 0 && k >= 0);
7 parse(parser , knots , i, k);
8 knots = reshape (knots , [], 1); % reshape to column

vector
9 stop_at = min(i+k+1, length(knots));
10 ds = zeros(stop_at -i+1, 1);
11 for j = i: stop_at
12 ds(j-i+1) = get_d(knots , i, j, k);
13 end
14 b = @(x) sum(ds .*( max(x - knots(i: stop_at ), 0).^k));
15
16
17 function d = get_d(knots , i, j, k)
18 d = prod (1./( vertcat (knots(i:j -1) , knots(j+1: min(i+k+1,

length(knots)))) - knots(j)));

Visualize some of the B-splines:
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1 % plot defaults
2 set(groot , 'DefaultFunctionLineLineWidth ', 1.5);
3 set(groot , 'DefaultAxesColorOrder ', [0 0 0]);
4 set(groot , 'DefaultAxesLineStyleOrder ',' -|--|:|-.');
5 % define splines
6 knots = [0;1;2;3;4;5;6;7;8;9;10];
7 b1 = splineB (knots , 1, 1);
8 b2 = splineB (knots , 1, 2);
9 b3 = splineB (knots , 1, 3);
10 % visualize
11 fig = figure;
12 hold on;
13 fplot(b1 , [-1 5]);
14 fplot(b2 , [-1 5]);
15 fplot(b3 , [-1 5]);
16 legend ([" Linear", " Quadratic ", "Cubic "]);
17 grid on;

Figure 6 displays examples of B-splines.

Figure 6: Linear, Quadratic and Cubic B-Splines.

We constructed splines starting at the knot 0. Observe that the linear spline extends
from 0 to 2, but is zero elsewhere. The quadratic and cubic splines extend over a slightly
longer interval. We can generate splines starting at other knots, and combine them to
create an approximation for some function of interest.

1.4.1 Example

Let’s analyze Runge’s example again. Instead of using Legendre polynomials, we will
now use the B-splines to approximate the function in Runge’s example. We begin with a
linear B-spline approximation:

1 % Runge 's example : continuous function on interval [-5, 5]
2 f = @(x) 1./(1+x.^2);
3 % define B- splines of order 1 (linear)
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4 knots = [ -5:5] ';
5 k = 1;
6 b1 = splineB (knots , 1, k);
7 b2 = splineB (knots , 2, k);
8 b3 = splineB (knots , 3, k);
9 b4 = splineB (knots , 4, k);
10 b5 = splineB (knots , 5, k);
11 b6 = splineB (knots , 6, k);
12 b7 = splineB (knots , 7, k);
13 b8 = splineB (knots , 8, k);
14 b9 = splineB (knots , 9, k);
15 b10 = splineB (knots , 10, k);
16 B = @(x) [b1(x) b2(x) b3(x) b4(x) b5(x) b6(x) b7(x) b8(x) b9(

x) b10(x)];
17 % Notice that the splines do not work with vector inputs ,
18 % so we will need for -loops to evaluate it.
19
20 % Approximate also using the 11 knots
21 P = zeros(length(knots), 10);
22 for i = 1: length(knots)
23 P(i, :) = B(knots(i));
24 end
25 beta = pinv(P'*P)*P'*f(knots);
26 fhat = @(x) B(x)*beta;
27 % Visualize
28 fplot(f, [-5 5]);
29 hold on;
30 x = linspace (-5, 5);
31 fhats = zeros(length(x), 1);
32 for i = 1: length(fhats)
33 fhats(i) = fhat(x(i));
34 end
35 plot(x, fhats);
36 legend ([" Original Function ", " Approximation "]);
37 ylim ([0 1]);
38 grid on;

Observe that the approximation does not suffer from the problems of using a polynomial
basis. The piecewise polynomials are localized, and have little effect on each other.

We can also use a cubic B-spline with the same knots, but we need more observations
to approximate the function. We can also extend the first knots so that the first B-spline
does not start at zero.

1 % Runge 's example : continuous function on interval [-5, 5]
2 f = @(x) 1./(1+x.^2);
3 % define B- splines of order 1 (linear)
4 knots = [ -7:5] ';
5 k = 3;
6 b1 = splineB (knots , 1, k);
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7 b2 = splineB (knots , 2, k);
8 b3 = splineB (knots , 3, k);
9 b4 = splineB (knots , 4, k);
10 b5 = splineB (knots , 5, k);
11 b6 = splineB (knots , 6, k);
12 b7 = splineB (knots , 7, k);
13 b8 = splineB (knots , 8, k);
14 b9 = splineB (knots , 9, k);
15 b10 = splineB (knots , 10, k);
16 B = @(x) [b1(x) b2(x) b3(x) b4(x) b5(x) b6(x) b7(x) b8(x) b9(

x) b10(x)];
17 % Notice that the splines do not work with vector inputs ,
18 % so we will need for -loops to evaluate it.
19
20 % Approximate also using the 11 knots
21 obs = linspace (-5, 5) ';
22 P = zeros(length(obs), 10);
23 for i = 1: length(obs)
24 P(i, :) = B(obs(i));
25 end
26 beta = pinv(P'*P)*P'*f(obs);
27 fhat = @(x) B(x)*beta;
28 % Visualize
29 fplot(f, [-5 5]);
30 hold on;
31 x = linspace (-5, 5);
32 fhats = zeros(length(x), 1);
33 for i = 1: length(fhats)
34 fhats(i) = fhat(x(i));
35 end
36 plot(x, fhats);
37 legend ([" Original Function ", " Approximation "]);
38 ylim ([0 1]);
39 grid on;

1.5 Approximating Functions of Many Variables
We can use the same methodology to approximate a function f of many variables. In
this case, f : Rn 7→ R, so that x is now a vector of dimension n. Let’s consider a basis
of power functions to approximate f . Let pk(x) denote a power function of degree k for
the vector x. It consists of all interaction terms between the elements of x, such that the
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sum of the exponents of each element is equal to k. For example:

p0(x) = 1

p1(x) =
(
x1
x2

)

p2(x) =

 x2
1

x1x2
x2

2



p3(x) =


x3

1
x2

1x2
x1x

2
2

x3
2


Given a choice for the highest order k of the polynomials, we can define p(x) as before.
For example, if we choose k = 2:

p(x) =



1
x1
x2
x2

1
x1x2
x2

2


Then, given a set of observations for x and f(x), we can proceed as in Equations 1, 2, 3
and 4.

1.6 Matlab Functions
There are a few functions in Matlab that help with interpolation. The function interp1
provides interpolation for 1-dimensional data. To use it, we must supply observations
{(x, f(x))}, a set of points where we want to evaluate the interpolation and the method
of interpolation (default is linear).

1 % Runge 's example : continuous function on interval [-5, 5]
2 f = @(x) 1./(1+x.^2);
3 x = [ -5:5];
4 eval_at = linspace (-5, 5);
5 fhat = interp1 (x, f(x), eval_at , 'linear ');
6 % Visualize
7 fplot(f, [-5 5]);
8 hold on;
9 plot(eval_at , fhat);
10 legend ([" Original Function ", " Approximation "]);
11 ylim ([0 1]);
12 grid on;

We can also use piecewise cubic splines with the method ’pchip’. There are also other
methods available, see the documentation for a complete list.

The function interp2 allows for interpolation of 2-dimensional data, and works in a
similar way to interp1. The function interpn extends the interpolation to n-dimensional
data.
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2 Integration
We will discuss three methods for computing integrals numerically: Newton-Cotes, Quadra-
ture and Monte Carlo.

2.1 Netwon-Cotes
We want to compute the following integral:∫ b

a
f(x)dx

Assume that we can compute the value of f at a set of equally spaced points x0 =
a, x1, x2, . . . , xn = b. The idea of Newton-Cotes is to interpolate the function with La-
grange polynomials and the integrate the polynomial. The approximation yields:

f(x) ≈
n∑
i=0

f(xi)li(x)

Where li is a Lagrange polynomial, and the weights multiplying the polynomials only
depend on the points x0, . . . , xn and on f . This approximation can now be integrated:∫ b

a
f(x)dx ≈

∫ b

a

(
n∑
i=0

f(xi)li(x)
)

=
n∑
i=0

f(xi)
∫ b

a
li(x)dx︸ ︷︷ ︸
wi

=
n∑
i=0

f(xi)wi

If we use a Lagrange polynomial of order 1 (linear), then we obtain the trapezoidal rule,
and the approximation of the integral is simply:∫ b

a
f(x)dx ≈

n∑
i=1

f(xi−1) + f(xi)
2 (xi − xi−1)

Since the points are equally spaced, we can simplify the equation above. Let ∆x ≡
xi − xi−1, then:∫ b

a
f(x)dx ≈ ∆x

2 [f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)]

If we use a higher order Lagrange polynomial to approximate f , then we obtain different
weights wi.

Example:
1 f = @(x) x.^2;
2 x = [1:5];
3 delta_x = x(2) - x(1);
4 int_f = (2* sum(f(x)) - f(x(1)) - f(x(end)))*( delta_x /2);

The trapezoidal rule is implemented in Matlab in the function trapz. It assumes points
are equally spaced with space equal to unit.
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1 x = [1:5];
2 % equally spaced points , with space = 1
3 trapz(f(x))
4 % not equally spaced
5 x = [1;1.5;2;2.1;3;3.8;5];
6 trapz(x, f(x))

2.2 Quadrature
The Quadrature method extends Newton-Cotes method by choosing the weights wi in a
special manner. The idea is to have weights such that the approximation of the integral
of f is actually an equality when f is a polynomial of some order. Matlab implements
a modified Quadrature method on the function integral. This modified method also
works when the integrand diverges.

To use integral, we need to pass a function handle to the function we want to
integrate, and the bounds of integration.

1 f = @(x) exp(-x);
2 % integrate over [0 1]
3 integral (f, 0, 1)
4 % integrate over [0, infinity )
5 integral (f, 0, Inf)
6 % integrate symmetric function over [0 2*pi]
7 integral (@sin , 0, pi)
8 integral (@sin , 0, 2*pi)

2.3 Monte Carlo
The idea of Monte-Carlo integration is to use the law of large numbers to compute the
integral of f . Consider a random variable Z with a density φ defined on the real line.
Then, we can compute the integral of f in the following way:∫ +∞

−∞
f(x)dx =

∫ +∞

−∞

f(x)
φ(x)φ(x)dx

= EZ
[
f(Z)
φ(Z)

]

For example, we could have φ be the density of the standard normal distribution. Now,
we can simulate an i.i.d. sample from this density, and approximate the integral via:

∫ +∞

−∞
f(x)dx ≈ 1

n

n∑
i=1

f(xi)
φ(zi)

The term on the right-hand side will approximate the true value of the integral with
probability one due to the law of large numbers. Example:

1 f = @(x) exp(-x.^2); % integral = (pi)^0.5
2 % generate values from the standard normal
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3 x = normrnd (0, 1, 10, 1);
4 disp(mean(f(x)./ normpdf (x)))
5 % increase number of observations
6 x = normrnd (0, 1, 1000000 , 1);
7 disp(mean(f(x)./ normpdf (x)))

If the integral is defined over a finite interval, say [a, b], then we can use the uniform
distribution over the same interval to generate the i.i.d. sample of xi’s. In this case, let
µ(x) = 1

b−a1[a,b](x) represent the uniform density over [a, b]. Then:
∫ b

a
f(x)dx =

∫ b

a

f(x)
µ(x)µ(x)dx

= EU
[
f(U)
µ(U)

]

≈ 1
n

n∑
i=1

f(xi)
µ(xi)

= b− a
n

n∑
i=1

f(xi)

Example:
1 % integrate over [0, 5]
2 f = @(x) x.^2;
3 % generate random values over interval [0, 5]
4 x = unifrnd (0, 5, 10, 1);
5 int_f = 5* mean(f(x))
6 % integral approximation converges as we increase number of

points
7 % 100 observations
8 x = unifrnd (0, 5, 100, 1);
9 int_f = 5* mean(f(x))
10 % 1000 observations
11 x = unifrnd (0, 5, 1000 , 1);
12 int_f = 5* mean(f(x))
13 % 10000 observations
14 x = unifrnd (0, 5, 10000 , 1);
15 int_f = 5* mean(f(x))

This method of integration is very useful for functions of many variables and can be
easily made to run in parallel.

3 Symbolic Math
For this part you will need to install the Symbolic Math Toolbox. We can use the
toolbox to do analytical computations, like differentiation, integration, simplification,
transformations, and equation solving.
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3.1 Creating Symbolic Variables and Expressions
To create the symbolic variables we use the function sym.

1 % clear the workspace
2 clear all
3 % create a symbolic number
4 sym (1/3)
5 % expressions involving symbols are displayed unindented
6 sym(pi)
7 % we can do computations with symbols , and the computations

are
8 % analytical
9 sin(pi)
10 sin(sym(pi))
11 % create a variable
12 sym('x') % unasigned so cannot

be reused
13 sym('x')*sym(pi)
14 % create a variable and assign it
15 x = sym('x');
16 x + 2
17 % verify the class of x
18 whos x

We can create multiple variables at once with the function syms.
1 clear all
2 syms a b c x y
3 % combine symbolic variables to create expressions
4 z = (exp(a) + log(b) - c)/(x+y)

The function syms is a shorthand function for invoking sym multiple times.
We can use sym to create vectors and matrices of symbolic variables.

1 % pass sym the name and dimension
2 A = sym('a', [3, 1])
3 % create a matrix
4 X = sym('x', [2, 2])
5
6 % create symbolic matrix from numeric matrix
7 Y = [0.25; 1/3; pi; 0.1245];
8 Y = sym(Y);

We can use syms with sym to create multiple symbolic variables where the names are
numbered:

1 clear all
2 % create symbolic variables a
3 syms(sym('a', [5, 1]))
4 syms(sym('x', [2, 2]))

Symbolic expressions can be combined:
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1 clear all
2 syms x y z
3 f = x^2 + y^2 + z^2;
4 g = exp(f^2) /2
5 % symbolic expressions can be reused by restating them with

syms
6 syms f
7 f
8 g

3.2 Creating Symbolic Functions
Symbolic functions are used to perform the analytical computations. We can create them
with syms:

1 clear all
2 % create a function f of two variables , x and y
3 syms f(x, y)
4 % x and y are symbolic variables
5 whos x y
6 % f is a symbolic function
7 whos f
8 % assign an expression to f
9 f(x, y) = x^2 + x*y + y^2;
10 % we can evaluate the function
11 f(0, 0)
12 f(1, 0)
13 f([1, 2, 3], [-1, -2, -3])

3.3 Derivatives
We can use the function diff to differentiate a symbolic function. The function diff
returns a symbolic function with the same arguments as the function being differentiated.

1 syms f(x, y)
2 f(x, y) = x^3 + 2*x*y + y^2
3 % differentiate with respect to x
4 dfdx = diff(f, x)
5 % evaluate the derivative
6 dfdx (1, 0)
7 % differentiate with respect to x again
8 dfdx2 = diff(dfdx , x)
9 % equivalent
10 dfdx2 = diff(f, x, 2)
11 % differentiate with respect to y and x
12 dfdyx = diff(f, y, x)
13 % differentiate with respect to x and y
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14 dfdxy = diff(f, x, y)
15
16 % can also differentiate expressions
17 diff(x^2, x)
18 diff(x^2, x, 2)

3.4 Integral
The function int is used to integrate symbolic expressions:

1 clear all
2 % specify function
3 syms f(x)
4 f(x) = exp(-x^2)
5 % integrate from -infinity to infinity
6 int_f = int(f)
7 % evaluate integral
8 int_f (1)
9 % integrate from 0 to 1
10 int(f, 0, 1)
11 % specify a multivariate function
12 syms f(x, y)
13 f(x, y) = x^3 + x^2*y + x*y^2 + y^3
14 % integrate with respect to x
15 int(f, x)
16 % integrate with respect to y
17 int(f, y)
18 % if variable not specified it is implied from first variable
19 int(f) % same as int(f, x)

in this case
20 % another multivariate function
21 syms f(x, y) n
22 f(x, y) = x^n + y^n
23 int(f, x)
24 int(f, n)
25
26 % if function cannot be integrated , the integral is left

unresolved
27 int(sin(sinh(x)))

3.5 Solve Equations
We can use the function solve to solve symbolic equations:

1 clear all
2 % solve equation on one variable
3 syms x
4 sol = solve(-x^2 + 2*x + 3 == 0, x)
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5 % sol is still symbolic
6 whos sol
7 % if the right -hand side is not specified , then == 0 is

implied
8 sol = solve(-x^2 + 2*x + 3, x)
9 % solve equations with several variables
10 syms x y
11 solve (-3*x^2 + 2*x*y + y^2 == 0, y)
12 % solve a system of equations
13 syms x y z
14 [sol_x , sol_y , sol_z] = solve(z == 4*x, x == y/2, z == x^2 +

y^2)

Matlab implements solvers for more complex equations, as systems of differential equa-
tions. For a complete description, refer to the Equation Solving reference page.

3.6 Simplify Expressions
The function simplify can be used to simplify symbolic expressions:

1 clear all
2 syms x y
3 f = sin(x)^2 + cos(x)^2
4 % simplify expression
5 simplify (f)
6 % another example
7 g = (sym (1) + sqrt (5))/2 % need one symbol at

least
8 simplify (g^2 - g - 1)

There is no clear way of simplifying a mathematical expression, and the results will vary
with the way the symbolic expressions are built.

The function expand can be used to expand symbolic expressions:
1 % expand polynomial
2 f = (x -2) *(x -3) *(y -2)
3 f_expanded = expand(f)
4 % simplify expanded expression
5 simplify ( f_expanded )
6 % expand expression
7 expand ((x -1) *(x+1))

The function factor can be used to factor expressions:
1 f = (x -2) *(x -3) *(y -2)
2 f_expanded = expand(f)
3 factor( f_expanded )

The function horner factors polynomials to a form that is efficient for computation.
1 horner(f)

Page 27

https://www.mathworks.com/help/symbolic/equation-solving.html
https://www.mathworks.com/help/symbolic/simplify.html?s_tid=doc_ta
https://www.mathworks.com/help/symbolic/expand.html?s_tid=doc_ta
https://www.mathworks.com/help/symbolic/factor.html?s_tid=doc_ta
https://www.mathworks.com/help/symbolic/horner.html?s_tid=doc_ta


Econ890-01 Matlab Summer 2019

3.7 Substitutions
While symbolic functions can be evaluated as a regular function, symbolic expressions
are not functions, and to be evaluated we need to use the function subs.

1 syms x y
2 f = (x -2) *(x -3) *(y -2)
3 f_expanded = expand(f)
4 % substitute x for 3
5 subs(f_expanded , x, 3)
6 % substitute y for 0
7 subs(f_expanded , y, 0)
8 % substitute a variable for another
9 subs(f_expanded , y, x)
10
11 % also applies to matrices
12 % create matrix with notation xij
13 X = sym('x%d%d', [3, 3])
14 subs(X, 'x11 ', 5)

3.8 Plotting
To plot symbolic expressions and functions we can use the functions:

• fplot for 2-D plots

• fplot3 for 3-D curves

• fsurf for surfaces

• fcontour for countor plots

There is also a function for plots on polar coordinates (ezpolar) and one for mesh plots
(fmesh).

3.9 Assumptions
The symbolic variables are by default assumed to be complex variables. We can use the
function assumptions to verify it.

1 % create variable
2 syms z
3 % verify it is complex
4 % should return empty symbolic object
5 assumptions (z)

We can add assumptions to a symbolic variable with the function assume.
1 syms x
2 assume(x >= 0)
3 % assumptions impact the behavior of other functions
4 syms f(x)
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5 f(x) = x^2
6 fplot(f)
7 % solve for roots
8 solve (-2*x^2 + 3*x + 3 == 0, x)

Additional assumptions can be added to the same symbolic variable with the function
assumeAlso.

To clear assumptions restate the symbolic variable or use assume with the ’clear’
option:

1 % clear assumptions
2 assumptions (x)
3 syms x
4 assumptions (x) % now empty
5
6 assume(x, 'integer ')
7 assumptions (x)
8 assume(x, 'clear ')
9 assumptions (X=x)

4 Assignment
Problem 1 Consider a deterministic growth model, where an agent decides between con-
sumption (ct) and investment in capital (kt), while maximizing his utility. We can write
this problem as:

max
∞∑
t=0

βtU(ct)

subject to

kt+1 = kαt − ct + (1− δ)kt,∀t >= 0
k0 > 0

Write the problem as a Bellman equation. You should obtain an equation similar to:

V (k) = max
k′

f(k, k′) + βV (k′)

Problem 2 (continuation of previous problem) Consider U(c;σ) = c1−σ−1
1−σ . Obtain the

Euler equation for this problem in terms of the consumption c.

Problem 3 (continuation of previous problem) (Optional) Use the Symbolic toolbox to
obtain the Euler equation for this problem in terms of the consumption c.

Problem 4 (continuation of previous problem) Assume we are in a steady state (c =
c′ = c∗ and k = k′ = k∗), then use the Euler equation to compute the steady state value
of k.

Problem 5 (continuation of previous problem) Solve the problem by Value Function It-
eration. Consider σ = 2, β = 0.95, δ = 0.1 and α = 0.33. Use the steady state value of
k to create a grid for the possible values of k, say 100 points between 0.25k∗ and 1.75k∗.
Start with a guess for V over the grid, for example V (k) = 0 for all k in the grid. Use the
Matlab minimization function to solve for k. You may want to add the constraint that c
should always be positive.
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Problem 6 (continuation of previous problem) Plot the value for different capital levels.
Interpret.

Problem 7 (continuation of previous problem) Plot the optimal policy function (choice
of k′ given k). Plot a 45 degree line with the policy function. Interpret in terms of a
steady state.
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