Econ890-01 Matlab Guilherme Salomé

Speeding Code Execution with the Econ Cluster

For most tasks, it is often enough to execute code on your own computer. And for
most tasks, using a single core of a processor is also enough. However, there are compute
intensive tasks that can greatly benefit from a computer with several cores and access
to a relevant amount of memory. For these tasks, your own computer might not suffice.
Fortunately, the Economics Department at Duke has its own cluster of computers that
Master’s and PhD students can use.

1 Requesting Access to the Cluster

To access the cluster, you will need a username and password. The username for the Econ
Cluster is the same as your University NetID username, but the password is different.
If you do not have a password yet, or do not remember it (if you are a PhD student
you were probably assigned a password during your 1st year at Duke), you can request a
password by emailing help@econ.duke.edu.

2 Connecting to the Cluster

You can think of the Econ Cluster as a collection of several computers, which are managed
by some centralized software. One of these computers is responsible for handling log in,
and is known as the front-end node (or the login node). This node is also responsible for
receiving and scheduling tasks on the other computers in the cluster.

To log in the Econ Cluster we will use the SSH protocol. This protocol was designed
to allow two computers to securely communicate over an insecure network. If you are
using a Mac or Linux-based operating system (like Ubuntu), then you already have what
is required to use SSH. If you are on Windows, then you will need to install an SSH client,
like PuTTY or any of the alternatives (they are all similar and straightforward).

2.1 Mac, Ubuntu or Linux

Open the Terminal program. You should see a window similar to the one depicted in
Figure [I]

Page 1

mailto:help@econ.duke.edu
https://en.wikipedia.org/wiki/Secure_Shell
https://www.chiark.greenend.org.uk/~sgtatham/putty/
https://www.puttygen.com/best-putty-alternatives-ssh-clients
https://support.apple.com/guide/terminal/welcome/mac

Econ890-01 Matlab Summer 2019

[] & guilhermesalome — -bash — 80x24
Guilhermes-MacBook—Pro:~ guilhermesalome$ |

Figure 1: Terminal on a Mac.

You can type commands after the dollar sign, and the terminal will interpret the
commands and execute them (REPL). We will discuss how to use the terminal in the
next section.

To log in the Econ Cluster, we will the the ssh command. The ssh command uses
the syntax:

ssh username@hostname

Where username is the username you will use to log in, and hostname is the address of
the computer host that you will connect to. If you are currently inside the Duke network,
then the hostname is login.econ.duke.edu. In my case, I would execute:

ssh gfs8Q@login.econ.duke.edu

Then, I am asked for my password to finish logging in (see Figure [2)).

Figure 2: SSH Asking for Password.

After typing your password, you should be greeted with a welcome message and are
now connected to the cluster (see Figure[3). You are connected to a bash terminal, which
can take commands and will execute them. We will discuss these commands in the next
section.

Page 2

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Econ890-01 Matlab

Summer 2019

guilhermesalome — ssh gfs8@login.econ. duke.edu —136x42
ah duke. ek

sword:
2019 from 10.196.79.76

< for your home directory

Size Used Aveil Usew
16 190 8.0 19%

e Used Avail Use
o s o

Figure 3: SSH Welcome Message.

If you are outside the Duke network, then you first the need to ssh into the Duke
network, and then ssh again into the Econ Cluster. To ssh into the Duke network, you
should use login.oit.duke.edu as the hostname, but now the username and password
are the same you use for logging into Duke websites (like Dukehub). After that, you can

execute ssh again to log in the Econ Cluster (see Figure {4)).

2.2 Windows

Figure 4:

Ton cpe-174-109-42-173.nc. res.rr. con

ow available for age through the OIT Virtual Computing Lab
vis 1 software ir

Filesysten Size Used Avail Use%
Jecon/hone/g/afs8 166 1.96 8.26

| Quota usage for your research directory

Filesy: Size Used Avail Usek
Jecon/; /afs8 566 o sec 6%

Welcome Guilherne!
[ofs8@login-86 ~1$ [l

remote us: service. To reser
em.duke .edu. Additiona: mages will be added to this service in

SSH From Outside Duke Network.

To connect to the cluster when working in the Windows operating system, you will
need to install an SSH client. I recommend installing PuTTY due to its simplicity and
convenience (it is also free). After installing the software, you will use ssh but with a

graphical user interface.

Open PuTTY and type login.econ.duke.edu on the Host Name window (see Figure
. You can now click Open to connect to the cluster. You will be prompted for your
username and your password.

Page 3

https://www.chiark.greenend.org.uk/~sgtatham/putty/

Econ890-01 Matlab

Summer 2019

Logging

(=) Terminal
Keyboard
Bell
Features

(=~ Window
Appearance
Behaviour
Translation
Selection
Colours

(=)~ Connection

Basic options for your PuTTY session

Specify the destination you want to connect to
Host Name (or IP address) Port
22

Connection type:
© Raw) Telnet) Rlogin @ SSH ¢

Load, save or delete a stored session
Saved Sessions

Default Settings

Close window on exit:
() Aways () Never @ Only on clean exit

Open

Figure 5: PuTTY SSH Client.

After typing your password, you should be greeted with a welcome message and are
now connected to the cluster. You are connected to a bash terminal, which can take
commands and will execute them. We will discuss these commands in the next section.

3 Using a Bash Terminal

Now that we are connected to the cluster, we can discuss how to use the terminal. The
terminal window you see is a bash shell. A shell is just a user interface to the underlying
operating system, and bash refers to the type of interface.

We can interact with the shell either by typing commands and executing them line
by line, or by creating script files. We will cover some basic commands of the bash shell.

3.1 Working Directory

The command pwd prints the current working directory:

pwd

You can change the working directory with the cd command:

syntax: cd folder
cd /econ
pwd
cd /econ/home
pwd
cd /econ/home/g/gfs8
pwd
cd
folder
pwd

.. refers to the parent

While .. represents the parent folder, there is a shortcut for your home folder as well:

Page 4

https://en.wikipedia.org/wiki/Bash_(Unix_shell)

Econ890-01 Matlab Summer 2019

cd ~

~ represents the home folder
altermnatively

cd $HOME

3.2 Creating Folders

You have permission to change things around only in your home folder. In my case,
my home folder is the folder /econ/home/g/gfs8. We can create a new folder with the
command mkdir:

syntax: mkdir folder_name
mkdir Matlab

mkdir Test

create multiple folders
mkdir A B C

3.3 Listing Files and Folders

We can list all files and folders inside a folder with the command 1s.

syntax: 1s

ls
display one file or folder per 1line
ls -1

You can get a full list of the options a command accepts by reading the manual page of
the command. You can access the manual page of a command using man:

syntax: man command_name
man 1ls

3.4 Deleting Files and Folders

We can delete an empty folder with the command rmdir.

syntax: rmdir folder_name
rmdir Test

remove multiple folders
rmdir A B C

To remove a non-empty folder we need to use the more versatile command rm with the
option -r:

create a non-empty folder
mkdir Test Test/A Test/B

check it is non-empty

ls -1 Test

equivalent to

Page 5

Econ890-01 Matlab Summer 2019

cd Test

1s -1

cd .

try to remove with rmdir

rmdir Test # error
use rm -r

rm -r Test # works

The command rm can also be used to remove files.

3.5 Creating Files

We can create empty files with the touch command:

syntax: touch file_name
touch test.txt

create multiple files
touch a.csv b. jpg

remove files

rm test.txt

remove multiple files
rm a.csv b.jpg

We can also create and edit files. To edit a file we need an editor. Some of the editors
available inside the bash terminal are: nano, vim and emacs. You can create or edit a
file with these editors by typing the name of the editor followed by the name of the file.
The editor nano is the most straightforward to use, however, the editors vim and emacs
are extremely powerful and might be worth to learn if you often use your computer to
type text into files.

create a new file with nano

nano data.csv

nano will now open with an empty file
type in:

1,21,0

2,28,25000

3,35,70000

then use Ctrl-0 to save the file, and then Ctrl-X to exit
nano

create another file

nano description.txt

type in:

1id,age,income

H H = H H H

3.6 Inspecting Files

You can quickly inspect the contents of a file with the cat command.

check name of files
1s -1

Page 6

https://www.nano-editor.org
https://www.vim.org
https://www.gnu.org/software/emacs/

Econ890-01 Matlab Summer 2019

see contents of data.csv

cat data.csv

see contents of description.txt and data.csv
cat description.txt data.csv

If the file is too big and you do not want to display its entirety on the screen, you can
use the head and tail commands. The head command displays the first few lines of a
file, while the tail command displays the last lines of a file.

see first lines of the file

head data.csv

see only first two lines of the file
head -n 2 data.csv

see only the first line of the file

head -n 1 data.csv

see last lines of the file

tail data.csv

see only very last line of the file

tail -n 1 data.csv

display first line of multiple files
head -n 1 description.txt data.csv

3.7 Copying and Moving Files

To copy files use the cp command.

syntax: cp source_file target_ _file

create a copy of data.csv

cp data.csv data_copy.csv

create a copy of the data inside a data folder
mkdir Data

cp data.csv Data/

ls Data

Files can be moved with the mv command.

remove the copy of data.csv from the Data folder
rm Data/data.csv

ls Data

move the original data file to the Data folder
mv data.csv Data/

check the file changed folder

ls

ls Data

4 Bash scripts

A bash script is just like a Matlab script: it is a text file containing commands that
should be executed line by line. We can create a bash script by creating a file with the

Page 7

Econ890-01 Matlab Summer 2019

extension .sh. Let’s use the command echo to print strings to the terminal window and
save them in a script file.

syntax: echo string
echo "Hello there!"
echo "How are you?"

Save it in a file (nano greetings.sh):

greetings.sh

echo "Hello there!"

echo "This is a bash terminal."
echo "Welcome."

head data.csv

We can execute this file with the command source. The source command takes a
script file and executes it line by line in the current shell.

syntax: source script_name
source greetings.sh

And you should see the three messages displayed in the shell.

We can use a shell script to execute several programs, including programs in other
languages. To do so, the shell must be able to find other programs. For example, when
we typed nano before, the shell searched for the program nano and then executed it with
the parameters we passed it. We can check whether the terminal can find a program with
the command which.

syntax: which program_name

if the program can be found, then the shell

displays the path to the program binaries

which nano

which emacs

if the program cannot be found, then nothing is displayed
which foo0123

If the program cannot be found, then it could either not be available in the machine, or
it could be outside of the path of the terminal. The path is a list of folders where the
terminal searches for programs. If the program cannot be found in those folders, then the
terminal does not return anything. However, if you know in which folder the program
lives, then you can specify the full path to it. Alternatively, you can add its folder
to the search path (this is left for another time, as it introduces some complications).
For example, in my machine matlab is not in the search path, but it can be found by
specifying the full path:

on local machine

which matlab

returns nothing

but we can specify the full path

which /Applications/MATLAB_R2019a.app/bin/matlab

Page 8

Econ890-01 Matlab Summer 2019

On the cluster, however, matlab should be in the search path:

ssh gfs8Q@login.econ.duke.edu
which matlab
returns /usr/local/bin/matlab

Let’s create a Matlab script that will perform some computation and save the results.

% matlab_computation.m

% Do some computation

x rand (200, 1);

y rand (200, 1);

res = x.xy. 2 + 1;

% Save results
save('results.mat', 'res');

We can now write a bash script that will interact with the operating system and then
execute the Matlab script. To execute the Matlab script we would call matlab test.m.
However, matlab also takes some options that can speed up its execution. We can pass a
script to be executed with matlab by using the option -batch and specifying the script
name, without the extension .m. The complete set of options matlab takes is described
in this reference page.

matlab_from_bash.sh

echo "Executes the Matlab script: matlab_computation.m"
execute Matlab script

matlab -batch "matlab_computation"

We can now execute this script with source matlab_from bash.sh, and the script will
be executed. Notice that at the end of the script, Matlab saves the results in the file
results.mat, which later we can import into our computer to analyze.

5 Slurm: Scheduling Tasks

Bash scripts are important because they are how we can interact with the Econ Clus-
ter. Remember, the Cluster is simply a collection of computers being managed by some
software. The software that manages the Econ Cluster is the Slurm Workload Manager!.

In the previous section, we logged in the log-in node of the cluster. At that node, we
can interact with the cluster via the terminal, and even execute some Matlab code via a
bash script. However, Slurm will not allow us to execute a lot of code, or code that takes
too long to run. Instead, Slurm allows us to submit tasks for it to run. That is, we can
give Slurm a bash script, and it will allocate the script to some computer in the cluster,
run it, and save the results in your home folder. In doing so, Slurm allows all users of
the Cluster access to powerful computers, but there may be a queue.

5.1 Shebang

The script matlab_from_bash.sh is almost ready to be submitted for execution with
Slurm. It is only missing a shebang line. The shebang is the very first line of a text file
used as a script, which specifies the interpreter that should be used when executing the

Page 9

https://www.mathworks.com/help/matlab/ref/matlablinux.html?s_tid
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://en.wikipedia.org/wiki/Shebang_(Unix)

Econ890-01 Matlab Summer 2019

file. While we could execute our script with source, by adding a shebang to the file, we
can execute it as an executable file. Create the following test script:

#!/bin/bash
test_shebang.sh
echo "Hello!"

We can still execute it with source:

source test_shebang.sh

But now, we can execute it as an executable file:

make the file executable
chmod +x test_shebang.sh

execute it
./test_shebang.sh

The first line of the script tells the terminal that it should use bash to interpret its
contents. Slurm needs this shebang to correctly submit the script.

5.2 Submitting to the Cluster

Modify the matlab_from_bash.sh so that its first line is #!/bin/bash. Delete the
results.mat file from the folder.
We can submit the matlab_from_bash.sh script to Slurm with the command sbatch.

submit script to Slurm
sbatch matlab_from_bash.sh

If there is no immediate issue with the script, Slurm will schedule the script for execution
in one of the computers (nodes) of the cluster. The scheduled script is called a job. Slurm
will print the job number on the screen.

5.3 The Queue

After submitting a script for execution, you should have its job number. You can use this
number to check what is the state of the job. We can use the command squeue to see
all jobs currently scheduled and being executed. See Figure [] for the output of squeue

delete — ssh gfs8@login.econ.duke.edu — 115x24
_bash. sh

Figure 6: Slurm queue after submitting a job.

Page 10

Econ890-01 Matlab Summer 2019

The job we just submitted has the number 33759. You can see in the second line
after the command squeue that the job has been scheduled. The NAME shows the name of
the script submitted, USER shows the user who submitted the job (net id), ST shows the
state of the job (PD stands for pending, while R stands for running). The TIME shows
for how long the job has been running. In the case of our job it has not started yet, so
TIME is 0:00. Notice that some other users have jobs running for more than 17 hours!
The NODELIST describes the reason why the job is in the queue. In the case of the job we
submitted, (None) means the job will be executed next. Usually, if there are not enough
resources available to execute your script, you will see a (Resources), which indicates
Slurm is waiting for other scripts to finish before executing yours. When the script is
being executed, NODELIST will show the node (computer) where the script is running.

If we have multiple jobs running, then we can check the status of the jobs submitted
only by us (not by everyone). We can do so with the option -u username, which displays
squeue but only for the specified username.

squeue -u gfs8

See Figure [7] for an example.

Figure 7: View of Slurm queue for a specified user.

In this case I submitted several jobs. The queue shows they are all running, some are
running on different nodes, and they have been running for a few seconds already. If you
run squeue -u gfs8 again, then you might see fewer jobs. This is because when a job
is completed, it does not show up in the queue anymore.

5.4 Details on a Job

We can use the sacct to get information on running and completed jobs we have sub-
mitted to Slurm. Running sacct will display details for all jobs submitted by you on a
certain period of time. If you have the job number, then you can use pass it with the
option -j to get details about that specific job (see Figure :

sacct -j 33759

Figure 8: View details of a submitted job.

Page 11

Econ890-01 Matlab Summer 2019

If you want even more information about a specific job, then you can use the command
sacct_ec:

sacct_ec -j 337569

Figure [9) displays the output of sacct_ec. Notice it shows the node where the script
was executed, and even the start and end time of the script.

Figure 9: View even more details of a submitted job.

These commands are useful when you submit jobs that might take a long time to
execute, or when debugging scripts that are failing to execute.

5.5 Canceling a Job

You can cancel a job using the scancel command. For example, if the job number is
33759, then scancel 33759 will cancel the job. You can only cancel jobs you started
yourself. If your script is taking longer than expected to complete, then you might have
some bug in your code that is causing it to hang. In this case, canceling the job might
be required.

5.6 Outputs of the Job

When a job is submitted and starts running, a file with the name slurm-XXXXX.out
is created. The XXXXX represents the number of the corresponding job. This file con-
tains whatever your script prints to the screen. For example, when we executed the
matlab_from bash.sh script, it printed a couple of lines on the terminal. If we submit
this script to Slurm, then the lines that would be printed on the terminal are saved on
the slurm-XXXXX.out file.

The .out file can be used as a log of what is happening in your script. You can use
it to debug your program, since debugging in the cluster is not as straightforward as
debugging in your local machine (you cannot stop the execution of the code and inspect
variables, for example).

The Matlab script we submitted also created a file containing the results. This file
is also saved in our home folder. When we submit a job with Slurm, our home folder is
directly accessible by the job, and behaves as a local drive.

6 Slurm: Partitions and Nodes
Slurm organizes the cluster in partitions, where each partition is a set of compute

nodes (computers used to run code). We can get an overview of the partitions available
in the Econ Cluster with the sinfo command. Figure [10| displays the output of sinfo.

Page 12

Econ890-01 Matlab Summer 2019

Figure 10: Overview of cluster partitions.

Notice there are two partitions, common* and common-1m. Different partitions might
have different purposes. For example, there could be a partition for debugging code, and
another for actually submitting tasks. In this case, the two partitions are for computing.
The default partition is marked with an asterisk. That is, the partition common is where
jobs are submitted to by default.

There are four compute nodes in the default partition. Some of them are in use, other
are idle, leading to the mix state. In the common-1m partition there are two nodes, which
are idle. The NODELIST column gives the names of the nodes. The nodes in the common
partition are bafcnm-01, bafcnm-02, comp-node-18 and comp-node-19. The nodes in
the common-1m partition are bafclnm-01 and bafcnm-02.

Notice that the column TIMELIMIT says infinite. This is the time limit to which
jobs are subject. In this case, there is no time limit.

We can display information organized by node instead of partition with the option
-N. We can also use the option -1 to display extra information.

sinfo -N -1

Figure [T1] displays the output of sinfo -N -1.

Figure 11: Overview of cluster nodes.

Notice that some of the nodes have 512 GB of memory, and the nodes in the default
partition have 64 GB of memory. The nodes in the common partition have more CPUS
than the nodes in the common-1m partition. The S:C:T column displays the number of
sockets in each motherboardﬂ, the number of cores in each processor, and the number
of threads in each core. If you multiple these numbers you get the number in the CPUS
column. In terms of parallel computing, the number of CPUS is more or less equivalent
to the number of parallel process that can be used with parfor.

It is important to know that when you submit a job to Slurm, it does not mean the
job will use an entire compute node to execute. That is, a single compute node can
execute multiple jobs at the same time. For example, a single job might use just one of
the CPUS of a compute node, so that the other CPUS can be allocated to other jobs. It
is also possible to have a job use multiple CPUS, including CPUS from more than one

'The socket is the physical space in a computer’s motherboard where the physical CPU is placed.
Most common motherboards only have one socket. However, motherboards for cluster computers usually
have more than one socket. This is the case for the computers in the Econ Cluster. Some of them have 4
sockets, while others have 8 sockets. That is, a single computer can have 4 or 8 different physical CPUs.

Page 13

Econ890-01 Matlab Summer 2019

compute node. On the next section we will see how to request CPUS and memory when
submitting jobs to Slurm.

7 Slurm: Requirements and Directives

When it comes to speeding up code execution, we saw that Matlab allows us to use more
than one processor core to speed up loops with parfor. With the Econ Cluster, we can
submit a job and request a certain number of CPUS to be available. Additionally, we
can also request a certain amount of memory, so that we do not run into memory issues
when using parfor. We will see how to specify these requirements using directives.

7.1 Directives

When we submit a script with sbatch, Slurm checks the script for directives. Directives
are lines that start with #SBATCH. We can add directives that tell Slurm what resources
are required to run the script. Slurm then processes these directives and waits until
the resources are available to start executing your script. This allows us to specify, for
example, how many CPUS and memory we need to run the script.

7.2 Requesting Memory and CPUs

Let’s modify the matlab_from_bash.sh script to add some directives.

#!/bin/bash

matlab_from_bash.sh

require 12 GB of memory for this job

#SBATCH --mem=12G

require 4 CPUS for this job

#SBATCH --cpus-per-task=4

echo "Executes the Matlab script: matlab_computation.m"
execute Matlab script

matlab -batch "matlab_computation"

The first directive requires a large amount of memory (12 GB). Remember that the
more workers you have, the more memory you need, since Matlab needs to distribute all
information in your workspace to all of the workers. If you run into problems executing a
parallel code in the cluster, it might be because you requested too little memory. If this
is the case, either request more memory or reduce the number of workers you require.
By using the --mem directive, we know that when our code is executed, at least 12 GB
of memory will be available.

There is a caveat with the memory directive in Slurm. If at some point our code
requires more than 12 GB of memory, Slurm will kill the execution of the job. This
happens even if more memory is available at the node. That is, if the node has 64 GB of
free memory, but your code uses more than the 12 GB that were requested, then Slurm
will kill the job. This means that the ——mem directive is binding. You must make sure
that your program does not use more memory than what was requested.

The second directive requires a node that has at least four available CPUS. Contrary
to the memory directive, the —-cpus-per-task directive will allow your code to use more
CPUS if available. That is, if Slurm starts executing your job and all CPUS of the node

Page 14

Econ890-01 Matlab Summer 2019

are not in use, then your code may receive more CPUS than were requested. This allows
us to use parfor to speed the execution of the code. If more resources are available, then
we might even get more CPUS than requested.

Let’s modify the matlab_computation.m script to run a parfor loop.

%» matlab_computation.m

% Check how many cores were allocated to the job
feature ('numcores ')

% Start pool of workers

ppool = parpool();

disp(sprintf ('Total Workers: %d', ppool.NumWorkers));
% Run parfor with increasingly more workers

for w = 1:ppool.NumWorkers
disp (sprintf ('Workers: %d', w));
tic;
parfor (i=1:10, w)
pause (1)
end
toc;
end

The first line tells Matlab to check how many cores are available. It prints out information
on how many cores are available in total, and how many are actually being used by
Matlab. The number of cores will determine how many workers can be used with parfor.

The second line initializes the pool of workers. By calling parpool() we create the
pool of workers with the default number of workers. If you are worried about memory
limitations (remember: more workers require more memory), then you can call parpool
with the number of workers you require. For example, parpool (4) would initialize a pool
of workers with only four workers, even if more are available.

The third line of code displays how many workers are available in the pool. The foor-
loop iterates over the number of available workers. It starts with a single worker, and
times the execution of a parfor-loop. Observe that if there is only one worker, then the
parfor-loop is a regular loop. It will iterate over the variable i, pausing for one second at
every iteration. When w is one, this parfor-loop should take about 10 seconds to complete.

On the next iteration in the outermost loop, the variable w becomes two. Now, we
run the parfor-loop with two workers. This means that the command pause (1) will be
assigned twice, once to each worker, so the loop will execute faster. Indeed, it should
take about 5 seconds to execute, since we two workers paused at each time.

Since the number of workers in the cluster can be high, the time to execute the parfor-
loop code above will get progressively smaller. After submitting the code with sbatch,
we can inspect the output file. Figure [12| displays the output.

Page 15

Econ890-01 Matlab Summer 2019

® O @ delete— login-teer-07:~ — ssh in.oit.duke.edu — 78x47
[gfs80login-01 ~1$ cat slurm-33789.out

Executes the Matlab script: matlab_computation.m

MATLAB is selecting SOFTWARE OPENGL rendering.

<MATLAB(R) >
Copyright 1984-2018 The MathWorks, Inc.
R2018b Update 2 (9.5.0.1033004) 64-bit (glnxaés)
January 5, 2019

MATLAB detected: 14 physical cores.
MATLAB detected: 28 logical cores.

MATLAB was assigned: 28 logical cores by the OS.

MATLAB is using: 14 logical cores.

MATLAB is not using all logical cores because hyper-threading is enabled.

ans =
14

Starting parallel pool (parpool) using the 'local' profile ..
connected to 12 workers.

Total Workers: 12

Workers: 1

Elapsed time is 10.330669 seconds.
Workers: 2

Elapsed time is 5.164624 seconds.
Workers: 3

Elapsed time is 4.166754 seconds.
Workers: 4

Elapsed time is 3.054383 seconds.
Workers:

Elapsed time is 2.138333 seconds.
Workers: 6

Elapsed time is 2.045419 seconds.
Workers: 7

Elapsed time is 2.037467 seconds.
Workers: 8

Elapsed time is 2.035435 seconds.
Workers: 9

Elapsed time is 2.080846 seconds.
Workers: 11

Elapsed time is 1.123825 seconds.
Workers: 11

Elapsed time is 1.06576@ seconds.
Workers: 12

Elapsed time is 1.09254@ seconds.
[gfs8@login-81 ~1$ JI

Figure 12: Output of Matlab script using parfor on the cluster.

In this case, even though we only requested four CPUS, many more were available.
Indeed, we could create a pool of workers with twelve workers! Notice that there were
actually fourteen cores available to Matlab, but the default number of workers from the
parpool command is twelve. We could have created a pool with the fourteen workers by
calling parpool(14). Alternatively, we could have called parpool (feature (’numcores’))
to use all available cores.

7.3 Multiple Jobs and Transferring Files

We have discussed how to submit a single job that uses many cores to speed up com-
putation. An alternative paradigm is submitting several different jobs that use a single
core, and then collecting all of their results.

For example, consider you have a statistic that you are interested in studying via
bootstrap, but that takes a long time to be computed (potentially because of a large
sample, or because the statistic is complicated). In this case, we could launch several
different jobs, where each computes a bootstrap sample and the statistic just once. We
can then accumulate the results to study the distribution of the statistic.

Let’s create some fake data to bootstrap.

% generate_fake data.m

mu = 20.5;

sigma = 5.8;

sample_size = 1000000;

sample = normrnd(mu, sigma, sample_size, 1);
save ('fake data.mat', 'sample');

We will use this data to compute the confidence interval for the mean via bootstrap.
We need to get the data from our computer into the cluster. To do so, we will use the

Page 16

Econ890-01 Matlab Summer 2019

command scp, which is similar to the ssh command, but is used to copy files securely. If
you are transferring a lot of files, or want a graphical user interface, then you could use
the program |Cyberduck, for example.

The syntax for scp is the following:

scp file_to_copy username@host:~

The command will take the file named file_to_copy and copy it to the folder ~ in the
host. Remember that ~ represents your home folder.

At the time of writing, I am outside of the Duke network, so there are two steps to
copy the data from my laptop to the Econ Cluster. First, I need to transfer the data from
my laptop to the Duke login node. Then, I ssh into the Duke login node and transfer
the data from there to the Econ Cluster.

Locate the file on my laptop

ls -1

fake_data.mat is in the current working directory

scp fake_data.mat gfs8Q@login.oit.duke.edu:~

will ask for your password and then start transferring the
file

Now, ssh into the login node of Duke

ssh gfs8Q@login.oit.duke.edu

check that fake_data.mat is in the current working
directory

ls -1

transfer to the Econ Cluster

scp fake_data.mat gfs8Q@login.econ.duke.edu:~

ssh into the Econ Cluster

ssh gfs8Q@login.econ.duke.edu

verify that the file was transferred

ls -1

Now, let’s create the bootstrapping script.

% bootstrap_mean_ fake data.m

% Load data

load ('fake_data.mat', 'sample');

% Bootstrap a new sample

ssize = length(sample);

new_sample = sample(unidrnd(ssize, ssize, 1));

% Compute statistic

statistic = mean(new_sample);

% Save result to csv

% Question: but what should be the name of the file?

The script loads the fake data, generates a bootstrap sample, computes the statistic and
saves it in a .csv file. However, we have a problem. What should be the name of the
.csv file? Since we are launching multiple jobs at the same time, how do we set the
name of the file programmatically? Before answering these questions, let’s create the
bash script that will launch several jobs, where each job will execute the Matlab script
above once.

Page 17

https://cyberduck.io

Econ890-01 Matlab Summer 2019

#!/bin/bash

multiple_jobs.sh

#SBATCH --cpus-per-task=1

#SBATCH --mem=1GB

#SBATCH --array=1-10

matlab -batch "bootstrap_mean_fake_data"

We can use the --array directive to submit multiple jobs with Slurm. The directive
-—array=1-10 will launch ten different jobs, numbered from 1 to 10. Each job will execute
our Matlab script. Since each job has a different number, each job will create a separate
.out output file. However, this output file is just what is displayed in the terminal, and
is mainly used for debugging. What we want to recover is the file containing the statistic
we computed.

When we submit a job with --array, a variable is created with the number of the
number of the job. We can pass this variable to the Matlab script and use it to save the
statistic value. The variable name that holds the job number is SLURM_ARRAY_ TASK_ID.
We can access its value in the bash script using the command $SLURM_ARRAY TASK_ID.
We can then pass this value to the matlab script:

#!/bin/bash

multiple_jobs.sh

#SBATCH --cpus-per-task=1

#SBATCH --mem=1GB

#SBATCH --array=1-10

matlab -batch "job_number=$SLURM_ARRAY_TASK_ID;
bootstrap_mean_fake_data"

Now, inside the boostrap_mean_fake_ data.mscript we can access the variable job_number:

% bootstrap_mean_fake _data.m

% Set seed

rng (job_number) ;

% Load data

load ('fake data.mat', 'sample');

% Bootstrap a new sample

ssize = length(sample);

new_sample = sample(unidrnd(ssize, ssize, 1));
% Compute statistic

statistic = mean(new_sample);

% Save result to csv

filename = strcat(num2str (job_number), '.csv');
csvwrite(filename, statistic);

The variable job_number is initialized by the bash script. We use it to create the .csv
file, so that each job, which has its own unique number, will create a unique .csv file.
This also has the advantage that if some job fails (a bug, or takes too much resource, or
bad weather), then we can quickly find it. We also used the job_number to set the seed
for random number generation. This way when we generate the bootstrap samples they

Page 18

Econ890-01 Matlab Summer 2019

are not all going to be the same, and the output will be repeatable if executed with the
same job_number.
We can submit the script to Slurm and verify that indeed 10 jobs are created:

Submit script for execution

sbatch multiple_jobs.sh

A job id is assigned.

Look at all jobs that were created:

squeue -u gfs8

Notice that JOBID is xXXXXXX_y, where xxxxxx 1is the job id,
and

y is the job number specified in the --array directive

Observe that many slurm-xxxxxx_y.out files were created:

ls -1 slurm-x*

The * above expands slurm- to all existing filenames that

begin with slurm-

Jobs should be done now:

squeue -u gfs8

Notice that the .csv files were created

ls -1 *.csv

We can sort the names numerically with the option -v

ls -1 -v *.csv

We can print them on the screen with cat

cat *.csv

The directive ——array takes a range of numbers, like 1-10, and launches jobs using
those numbers to create the job ids. However, the range of numbers can be discontinuous.
For example, the directive ——array=1-3,5,7-10 would launch jobs with ids 1, 2, 3, 5, 7,
8, 9 and 10, skipping the ids 4 and 6. It is also possible to use -—array=7 to launch a
single job with that id number. The single value or discontinuous --array directives are
useful for resubmitting a specific job that failed.

8 Assignment

Problem 1 Modify the scripts multiple_jobs.sh and bootstrap_mean_fake_data.m
so that a new folder is created to store the resulting . csv files. If the folder already exists,
the files inside it should be deleted before the script runs.

Problem 2 (Optional) Create a bash script that takes all of the .csv files outputted
from multiple_jobs.sh and creates a single . csv file with all of the results.

Problem 3 Create a Matlab script that takes all of the . cswv files outputted from multiple_jobs. sh
and creates a single . csv file with all of the results.

Problem 4 Compare the advantages and disadvantages of the following takes on parallel
computing with the cluster:

e Launching a single job that uses multiple cores;

e Launching several jobs that use a single core

Page 19

Econ890-01 Matlab Summer 2019

Problem 5 Assume you mistakenly launched several jobs with the —-array=1-500000
directive. Instead of typing scancel job_id for each job, how would you use scancel
to cancel all of the jobs you submitted at once?

Problem 6 Consider a deterministic growth model, where an agent decides between con-
sumption (c¢;) and investment in capital (k:), while maximizing his utility. We can write
this problem as:

max i BU (cy)
=0

subject to kt+1 = kt — ¢+ (1 — 5)/@,% >=10
k’o >0

Write the problem as a Bellman equation. Let U(c; o) = Cl:a’l . Obtain the Euler equation

for this problem in terms of the consumption c. Solve the problem by Value Function
Iteration. Consider o =2, 5 =0.95, 6 = 0.1 and o = 0.33. Use the steady state value of
k to create a grid for the possible values of k, say 100 points between 0.25k* and 1.75k*.
Start with a guess for V' over the grid, for example V (k) = 0 for all k in the grid. Use the
Matlab minimization function to solve for k. You may want to add the constraint that c
should always be positive.

Use parfor and the Econ Cluster to speed up the solution of this problem. Compare
the speed gain with solving the problem using your local computer.

Page 20

https://en.wikipedia.org/wiki/Bellman_equation

	Requesting Access to the Cluster
	Connecting to the Cluster
	Mac, Ubuntu or Linux
	Windows

	Using a Bash Terminal
	Working Directory
	Creating Folders
	Listing Files and Folders
	Deleting Files and Folders
	Creating Files
	Inspecting Files
	Copying and Moving Files

	Bash scripts
	Slurm: Scheduling Tasks
	Shebang
	Submitting to the Cluster
	The Queue
	Details on a Job
	Canceling a Job
	Outputs of the Job

	Slurm: Partitions and Nodes
	Slurm: Requirements and Directives
	Directives
	Requesting Memory and CPUs
	Multiple Jobs and Transferring Files

	Assignment

