
Econ890-01 Matlab Guilherme Salomé

Matlab Basics

1 The Matlab Integrated Development Environment
When Matlab is first opened you are presented with an integrated development environ-
ment (IDE), which is depicted in Figure 1 below.

Figure 1: The Matlab IDE.

The figure shows four windows from left-to-right: Current Folder, Command Win-
dow, Workspace, Editor. The Current Folder window displays all files in the working
directory Matlab is currently at. This working directory is where Matlab will search for
user-defined functions and other files (more on this later). You can change the working
directory by using the navigation bar above the window.

The Command Window is known as a repeat-eval-print-loop (REPL), and is where we
can interactively type and execute Matlab commands. As you type commands in, Matlab
will execute them and then wait for more. For example, type the following in the Command
Window and hit enter to execute:

1 cd ~/

Matlab will change the working directory to the home folder of your computer. Here, we
evaluated a special function cd with the argument ~/.

Page 1

Econ890-01 Matlab Summer 2019

The Workspace window shows a list of all variables created so far. The list is empty
because we have not created any variable yet. Create a new variable by typing:

1 x = 1

Now the Workspace window should show the name and value of the variable.
Last, the Editor window is where we edit .m files. These files are used to create Matlab

scripts and to define functions. Notice that the Editor window can open multiple files
by using separate tabs.

All four windows can be rearranged and even removed from view. Feel free to cus-
tomize the IDE to your needs. I often remove the Workspace window, and rearrange the
Editor window for it be on top, leaving a smaller space for the Command Window on the
bottom of the IDE. Figure 2 shows the IDE with the windows rearranged.

Figure 2: A possible way to organize the windows in the IDE.

2 Hello World!
We will now create a "hello world" program in Matlab. Go on the Editor window and
type the following:

1 % helloworld .m
2 disp (" Hello World!");

Save the file with a descriptive name, like helloworld.m. Now, we would like to run our
helloworld.m program. There are two ways of doing so:

• Click on Editor and then on the green button Run (see Figure 3);

• Or, on the Command Window type the name of the file without the .m extension and
hit enter.

Page 2

Econ890-01 Matlab Summer 2019

Figure 3: Running a Matlab script.

When we run the file, Matlab displays the result in the Command Window. The first
line of the file starts with a percentage symbol, which indicates a comment line. In the
second line, the function disp is called. This function takes a string as an argument and
displays it on the screen.

3 Linear Regression with Ordinary Least Squares
To learn the fundamentals of the Matlab programming language we will implement the
ordinary least squares (OLS) estimator for the parameters of a linear regression under
the classical assumptions.

Let’s assume that the economic model of interest is given by:

y︸︷︷︸
n×1

= X︸︷︷︸
n×K

β︸︷︷︸
K×1

+ ε︸︷︷︸
n×1

where y is a n × 1 vector of observed dependent variables, X is an n × K matrix of
observed explanatory variables, β is a K × 1 vector of unknown parameters and ε is a
n× 1 vector of unobserved explanatory variables.

We know that the OLS estimator of β (see Equation 1.2.5 in Hayashi (2000)) is given
by:

β̂ = (X ′X)−1X ′y (1)

Our first objective is to implement this estimator.
Using a bottom-up approach, we need to understand:

1. The data types for numbers in Matlab;

Page 3

Econ890-01 Matlab Summer 2019

2. How to create vectors and matrices;

3. How to do matrix transposition, inversion and multiplication;

4. How to create a function that given X and y produces β̂;

5. How to generate data to test out our code.

3.1 Numeric Data Types for Numbers
Numeric values are stored in the double-precision floating point format, by default. The
class name of this type of numeric value is double. We can create doubles by simply
assigning them to variables:

1 x = 10;
2 y = 5

Whenever you see code in a box as above, you should run it yourself by typing the
commands line by line, in the Command Window.

Notice that when the semicolon is omitted, Matlab displays the result of the assign-
ment on the screen. If you want to suppress this display you need the semicolon. The
use of semicolon is important when constructing scripts, so that the Command Window is
not filled with information we do not need to see. However, omitting the semicolon when
typing in the Command Window is useful to see the result of operations.

1 % The two lines below
2 y = 5;
3 disp(y);
4 % are equivalent to:
5 y = 5

The usual mathematical operations can be performed with numbers:
1 x + y
2 x - y
3 % multiplication
4 x*y
5 % floating point division
6 y/x
7 x/y
8 % exponentiation
9 x^y
10 % remainder of integer division
11 mod (13, 5)
12 % integer division
13 floor (13/5)
14 % absolute value
15 abs (-1)
16 % maximum
17 max(x, y)
18 % minimum
19 min(x, y)

Page 4

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Econ890-01 Matlab Summer 2019

20 % exponential
21 exp (4)
22 % narutal logarithm
23 log(exp (1))
24 % square root
25 sqrt (4)
26 4^0.5
27 % factorial
28 factorial (x)
29 % pi
30 pi
31 sqrt(pi)
32 % trigonometry
33 sin (0)
34 cos (0)
35 tan (0)

The result of the operations above are still double.
You can verify the type and size in memory of a variable with the special1 function

whos:
1 whos x;
2 whos x y;

It is important to notice that the number displayed in the Command Window is a
formatted version of the actual number stored in a variable. For example, π is displayed
as 3.1416. By default, Matlab displays numbers using at most 5 digits, and it may use
scientific notation for numbers that are too big or too small.

1 pi
2 0.0000009809809
3 213124412123

We can change the display format for numeric values between 5 digits and 15 digits using
the special command format:

1 pi
2 % Use 15- digits to display numbers
3 format long;
4 pi
5 % Use 5-digits to display numbers
6 format short;
7 pi
8 % Force scientific notation with 5-digits
9 format short e;
10 pi

1The function whos is being called with a special syntax called the command syntax. Usually, in
a function call the parameters are passed inside parentheses, as in mod(x, y). However, the command
syntax allows us to pass parameters without using parentheses, as in whos x y. It is not often used,
except with a few Matlab commands. More details about this command syntax are available at this
page.

Page 5

https://www.mathworks.com/help/matlab/matlab_prog/display-format-for-numeric-values.html
https://www.mathworks.com/help/matlab/matlab_prog/command-vs-function-syntax.html
https://www.mathworks.com/help/matlab/matlab_prog/command-vs-function-syntax.html

Econ890-01 Matlab Summer 2019

11 % Force scientific notation with 15- digits
12 format long e;
13 pi

Observe that, as with other implementations of floating-point arithmetic (as in C or
FORTRAN), Matlab is also subject to the usual rounding errors.

1 3*(4/3 - 1) - 1

However, this is not a bug, but an issue resulting from not being possible to write 4
3 as a

binary number using a finite number of bits.
There are other numeric types available, such as integers, complex numbers, infinity,

not a number, among others. It is worth mentioning that infinity and not a number can
result from some arithmetic operations:

1 % Finding infinity in Matlab
2 1/0
3 -1/0
4 % Not a number
5 1/0 - 1/0

Using double is sufficient for most applications, and for this reason we will skip the
other numeric types. However, applications that are memory bound or that require a lot
of optimization may benefit from the other numeric types. The official documentation
on all numeric types is available on this page.

3.2 Vectors and Matrices
Vectors and matrices are structured collections of numbers of type double (by default).
We can create vectors and matrices by:

1 % A 5x1 vector
2 y = [10; -2; 3.4; exp (3); log (4.5)]
3 % A 5x3 matrix
4 X = [1, 2, 3;
5 1,-3, 5;
6 1, 4, 0;
7 1, 0,-1;
8 1, 4.5, 3.3]

Notice that commas separate columns and semicolons separate rows. The use of commas
to separate columns is optional.

We can very obtain the dimension of a vector with the function length, and the
dimensions of a matrix with the function size:

1 length(y)
2 size(X)

What would be the result of calling length on a matrix? We can figure that out by
reading the help documentation on the length function.

1 help length

Page 6

https://en.wikipedia.org/wiki/IEEE_754
https://www.mathworks.com/help/matlab/numeric-types.html

Econ890-01 Matlab Summer 2019

In the case of a matrix, it will return the value of the highest dimension.
Notice that the function size applied on a matrix returns two numbers. We can

access these two numbers separately by: saving them on two separate variables, or asking
the function size to return only one of the numbers.

1 A = ones (2, 3)
2 help size
3 % save the dimensions to two variables
4 [d1 , d2] = size(A)
5 % ask size to return only the 1st dimension
6 d1 = size(A, 1)
7 % ask size to return only the 2nd dimension
8 d2 = size(A, 2)

To access the elements of vectors and matrices we use the following syntax:
1 % The first element of a vector has the index 1
2 y(1)
3 % The second element of a vector has the index 2
4 y(2)
5 % And so on until the last element
6 y(5)
7 % For a matrix we need to define both dimensions
8 % The very first value at the first row and first column
9 X(1, 1)
10 % The value on the first row and second column
11 X(1, 2)
12 % The value on the last row and the last column
13 X(5, 3)
14 % There is a special syntax to get all rows of a column
15 X(:, 2) % all rows of 2nd column
16 X(:, 1) % all rows of 1st column
17 % The same notation applies to get all columns of a row
18 X(4, :) % all columns of the 4th row
19 X(1, :) % all columns of the 1st row
20 % We can use a similar notation to access slices of the

matrix
21 X(2:4 , 4) % rows 2 to 4 of the 4th column
22 X(3, 1:2) % columns 1 to 2 of the 3rd row
23 X(2:4 , 1:2) % columns 1 to 2 of rows 2 to 4

The values stored in arrays (vectors, matrices and higher-dimensional matrices) can
be modified in place:

1 a = [0 1; 2 3]
2 a(2, 1) = 500
3 % multiple values can be updated at once
4 a(:, 1) = [30; 30] % modifying an entire column
5 a(2, :) = [20 20] % modifying an entire row

There are a few functions that assist in the creation of matrices:

Page 7

Econ890-01 Matlab Summer 2019

1 % Matrix full of zeros
2 help zeros
3 zeros (2)
4 zeros (4, 1)
5 % Matrix full of ones
6 ones (3)
7 ones (2, 3)
8 % Identity matrix
9 eye (5)
10 eye(2, 3)
11 % Sparse Identity Matrix
12 A = eye (1000)
13 B = speye (1000) % optimized
14 whos A B
15 % Diagonal matrix
16 diag ([1 2 3 4 5])

We can also generate a vector by using a range of numbers:
1 % start:stop
2 A = 1:4
3 % the values are incremented by 1 until the value is greater

than
4 % the stop , which is 4
5 B = -5: 3.5
6 % we can change the increment using the syntax start:

increment :stop
7 C = -5:0.5:3.5

We can combine other matrices to create new ones:
1 A = [X(:, 1), X(:, 3)]

3.3 Matrix Operations
We can now create matrices and modify them. Now we will cover the basic matrix
operations. Let’s start with matrix and scalar operations:

1 X = [1 2 3; 4 5 6]
2 % operations with a scalar are elementwise
3 X + 3
4 X - 2
5 % special notation for elementwise multiplication , division

and exponentiation
6 X.*3
7 X./3
8 X.^3
9 % log , exp and sqrt apply elementwise
10 log(X)

Page 8

https://www.mathworks.com/help/matlab/math/basic-matrix-operations.html;jsessionid=e2359d161cc1539728b94fe2fea9
https://www.mathworks.com/help/matlab/math/basic-matrix-operations.html;jsessionid=e2359d161cc1539728b94fe2fea9

Econ890-01 Matlab Summer 2019

11 exp(X)
12 sqrt(X)

Matrix and matrix operations:
1 A = [10 20 30; 0 -5 -10];
2 B = [2 2 2; 5 10 20];
3 % elementwise operations (matrices have the same dimensions)
4 A + B
5 A - B
6 A./B
7 A.*B
8 % concatenation
9 % concatenate rows (vertical concatenation)
10 C = vertcat (A, B)
11 C = [A; B]
12 % concatenate columns (horizontal concatenation)
13 D = horzcat (A, B)
14 D = [A B]
15 % repetition
16 repmat(A, 2, 3) % repeats matrix A: 2 times in row , 3 times

in column

Now, for linear algebra:
1 A = [10 2 30;
2 0 -5 -10]
3 B = ones(size(A, 2), 1)
4 % Matrix multiplication
5 C = A*B
6 % Matrix tranposition
7 transpose (A)
8 A'
9 % Matrix inversion
10 C = [A; B']
11 C^(-1)
12 inv(C)
13 % Solving linear system Cx=B
14 solution = C\B
15 % Eigenvalues and eigenvectors
16 eigenvalues = eig(C)
17 [eigenvectors , eigenvalues] = eig(C)
18 % Singular value decomposition
19 [U, S, V] = svd(C)
20 % Kronecker Product
21 kron(A, B)

There are many other useful linear algebra functions. The full documentation is available
on the linear algebra reference page.

Page 9

https://www.mathworks.com/help/matlab/linear-algebra.html?s_tid=CRUX_lftnav

Econ890-01 Matlab Summer 2019

3.4 Functions (and Conditionals)
We now have the main ingredients to implement the OLS estimator from Equation 1:

1 y = [10; -2; 3.4; exp (3); log (4.5)]
2 X = [1, 2, 3;
3 1,-3, 5;
4 1, 4, 0;
5 1, 0,-1;
6 1, 4.5, 3.3]
7 % The OLS estimator for the regression y = X*beta + epsilon
8 beta_hat = inv(X'*X)*X'*y

Now that we have the estimator, we want to be able to use it for whatever matrices X
and y we have. To do that, we create a function.

Functions in Matlab are created in separate files ending in .m. Each function has
its own .m file2. The syntax for a function is function [output1, ..., outputN] =
foo(input1, ..., inputM), then the actual function code, and last we finish with the
keyword end. Let’s create a simple function for the OLS estimator:

1 % linreg_ols .m
2 function [beta] = linreg_ols (y, X)
3 beta = inv(X'*X)*X'*y;
4 end

Whenever you see a box as above where the first line starts with a comment of the type
% somename.m, it means that you should type the code in a new file and save it with the
name given in the comment. Save the file on the current folder Matlab is using.

Notice that the name of the function must be the same name of the file. After saving
the file, we can use the function by just calling its name:

1 beta = linreg_ols (y, X)

Matlab can access all .m files in the current folder and on sub-folders within it.3
There are a couple of modifications we need to do to the linreg_ols function. First,

we need to add documentation about it, so that our future selves know what it actually
does. We do so by adding comments to the function right after the line where the function
is declared. These comments should accomplish the following:

• A description of the function does in one line (or very few lines);

• A description of the function inputs;

• A description of the function outputs;

• Examples of usage.
2Strictly speaking there can be more than one function in a single .m file, but there must be one

function with the same name as the file name, and the other functions in the file are known as local
functions. These local functions are not available outside of the .m file, and their use is to break down
the code in smaller pieces.

3It is possible to use functions and other files in folders outside the current folder. To do so, you
need to add the path to that specific folder to the search path Matlab uses. This can be done with the
function addpath. See the addpath reference for details.

Page 10

https://www.mathworks.com/help/matlab/ref/function.html
https://www.mathworks.com/help/matlab/ref/addpath.html

Econ890-01 Matlab Summer 2019

After finishing core functions it is absolutely necessary to add documentation. If you
stop using your code, even for a few days, it is very easy to forget what you did and what
different functions do. Having the documentation is fundamental to quickly remember
how to operate your code. We can add comments in Matlab with a percentage symbol.
Let’s add comments so that the usage of the function is clear:

1 % linreg_ols .m
2 function [beta] = linreg_ols (y, X)
3 % LINREG_OLS estimates beta in the linear regression y = X*

beta + epsilon
4 % via ordinary least squares
5 %
6 % Args:
7 % y: A nx1 vector of dependent variables
8 % X: A nxK matrix of independent variables
9 %
10 % Returns :
11 % beta: A Kx1 vector of the estimated beta coefficients
12 %
13 % Examples :
14 % y = [1;2;3];
15 % X = rand (3);
16 % beta = linreg_ols (y, X)
17 %
18 % Reference :
19 % Equation 1.2.5 in Hayashi , F. (2010).
20 % Econometrics . Princeton University Press. isbn:

9780691010182.
21
22 beta = inv(X'*X)*X'*y;
23
24 end

You can see the documentation of the function with the special command help.
1 help linreg_ols

Often we want to add an intercept to the linear regression. Let’s extend our linreg_ols
function to automatically add an intercept. To conserve space in the lecture notes, I will
remove the documentation for our function, but you should not.

1 % linreg_ols .m
2 function [beta] = linreg_ols (y, X)
3 % add intercept to X
4 X = horzcat (ones(size(X, 1), 1), X); % X is a local variable

to this function
5 beta = inv(X'*X)*X'*y;
6 end

If we want the intercept to be optional, then we need to add a new input to the
function that will represent whether or not we want the intercept to be added to X. We

Page 11

Econ890-01 Matlab Summer 2019

can do so by using the conditional statement if.

3.4.1 Conditionals

The syntax for conditional statements is:
1 if condition
2 % code to run if condition is true
3 elseif another_condition
4 % code to run if condition is false and
5 % another_condition is true
6 else
7 % code to run if condition and another_condition are

false
8 end

In this case the condition is pretty simple, we can add an input with the name
add_intercept and if its value is true we add the intercept, otherwise we do not. In
Matlab, the possible logical (boolean) values are true and false, but the numbers 1 and
0 can also be used to the same extent. The basic relational operators are:

1 % equal to
2 true == 1
3 % not equal to
4 true ~= false
5 % greater than
6 3 > 2
7 % greater or equal than
8 2 >= 2
9 % less than
10 3 < 2
11 % less or equal than
12 -1 <= 0

It is also possible to combine different conditions with these logical operators:
1 % and
2 (1 > 0) && (2 > 1)
3 % or
4 (1 < 0) || (2 < 1)
5 % not
6 ~(1 > 0)

3.4.2 Optional Intercept

Let’s modify linreg_ols to make the intercept optional:
1 % linreg_ols .m
2 function [beta] = linreg_ols (y, X, add_intercept)
3 if add_intercept :
4 X = horzcat (ones(size(X, 1), 1), X);

Page 12

Econ890-01 Matlab Summer 2019

5 end
6 beta = inv(X'*X)*X'*y;
7 end

Finally, we update the documentation:
1 % linreg_ols .m
2 function [beta] = linreg_ols (y, X, add_intercept)
3 % LINREG_OLS estimates beta in the linear regression y = X*

beta + epsilon
4 % via ordinary least squares
5 %
6 % Args:
7 % y: A nx1 vector of dependent variables
8 % X: A nxK matrix of independent variables
9 % add_intercept : A boolean variable . If true , then a

column of
10 % ones is added to X, so that an intercept for the

linear
11 % regression is estimated .
12 %
13 % Returns :
14 % beta: A Kx1 vector of the estimated beta coefficients
15 %
16 % Examples :
17 % y = [1;2;3];
18 % X = rand (3);
19 % beta = linreg_ols (y, X)
20 %
21 % Reference :
22 % Equation 1.2.5 in Hayashi , F. (2010).
23 % Econometrics . Princeton University Press. isbn:

9780691010182.
24 if add_intercept :
25 X = horzcat (ones(size(X, 1), 1), X);
26 end
27 beta = inv(X'*X)*X'*y;
28 end

3.5 Generating Data (and Loops and Text)
To test if our function is actually doing what we think it is doing, we need to test it.
Testing is imperative when programming, since generating code that is 100\

In this case, we are going to simulate data for X, ε and y, while fixing true values
for the parameters β. First, to simulate the data we will assume that In Matlab, the
basic random number generation functions can generate values from the uniform and
normal distributions. However, in the "Statistics and Machine Learning Toolbox" there
are random number generators for many other distributions. Let’s assume X comes from

Page 13

https://www.mathworks.com/help/matlab/random-number-generation.html
https://www.mathworks.com/help/stats/random-number-generation.html

Econ890-01 Matlab Summer 2019

the uniform distribution on the interval (0, 1), while ε comes from the standard normal
distribution. We will generate these values in a loop.

3.5.1 Loops

In Matlab, we can create for loops and while loops. The syntax for for loops is:
1 % syntax for for loops
2 for variable = range
3 % variable takes the value in the range
4 % run some code
5 end
6 % example
7 for i = 1:10
8 disp(i)
9 end
10 % example with nested loops
11 X = zeros (3)
12 for i = 1: size(X, 1)
13 for j = 1: size(X, 2)
14 X(i, j) = i + j;
15 end
16 end

For loops will terminate when all values in the range are exhausted.
The syntax for while loops is similar:

1 % syntax for while loops
2 while condition
3 % if condition is true
4 % run some code
5 end
6 % the condition must be a boolean value
7
8 % example
9 i = 0
10 while i < 10
11 disp(i)
12 i = i + 1 % no i++ or += on Matlab
13 end

While loops will terminate when the condition is no longer true.
If you write an infinite loop, you can break out of it with Ctrl + C. In addition, if

you need a loop to terminate earlier you can use the keyword break. For example:
1 numb_iter = 0
2 max_iter = 10
3 distance = 1000
4 while distance > 0.01
5 distance = distance /2
6 if numb_iter >= max_iter

Page 14

Econ890-01 Matlab Summer 2019

7 disp ("I will break now ")
8 break
9 else
10 numb_iter = numb_iter + 1
11 end
12 end

3.5.2 Generating Data in a Loop

Let’s now create our test data. We will generate a matrix X with 100 rows and 5 columns,
and ε will be a vector with 100 rows. We will create this data in a script, so that we can
run it multiple times with different number of rows and columns.

1 % script: test_linreg_ols .m
2 % Generates data from the linear model y = X*beta + epsilon ,
3 % given the true beta values. Estimates beta using the

function
4 % linreg_ols and displays a table comparing true values to
5 % parameters .
6
7 % number of rows and columns
8 nrows = 100;
9 ncols = 5;
10 % true betas
11 beta = [-1; 2; 0.5; 3; 0.1];
12 % generate data for X, epsilon and y
13 X = zeros(nrows , ncols);
14 epsilon = zeros(nrows , 1);
15 y = zeros(nrows , 1);
16 for i = 1: nrows
17 X(i, :) = rand (1, 5);
18 epsilon (i) = randn ();
19 y(i) = X(i ,:)*beta + epsilon (i);
20 end
21 % estimate the betas from X and y
22 beta_hat = linreg_ols (y, X, true);

Whenever we run the script above, we will generate data and estimate the values of β.
Notice that we added an intercept in the estimation, even though the true model does
not have an intercept. To make the comparison between true parameters values and their
estimates, we would like to display the values side by side, with some text indicating what
are the true parameters and what are the estimates.

3.5.3 Characters and Strings

In Matlab, there are two data types for text: char and string. A char holds a sequence
of characters. It works like a vector of numbers, but holds characters instead. To create
a char we use single quotes ’:

Page 15

https://www.mathworks.com/help/matlab/characters-and-strings.html

Econ890-01 Matlab Summer 2019

1 name = 'Guilherme '
2 % name is an array of characters , the individual letters of

my name
3 length(name)
4 name (1)
5 name(length(name))
6 % we can also concatenate character arrays
7 disp (['My name is ' name '!'])

Characters are meant to store short pieces of text, and are used to specify file names,
labels and titles for plots, and inputs for functions.

A string array is meant to hold and manipulate larger pieces of text. Matlab provides
various functions for manipulating text stored in string arrays. String arrays are created
in a fashion similar to matrices, but with brackets and text in double quotes ":

1 % creating a simple string array
2 full_name = [" Guilherme ", "Salome "];
3 % full_name is a string array
4 size(full_name)
5 full_name (1, 1)
6 full_name (1, 2)
7 % a string array with many rows and columns
8 students_names = [" First Name", "Last Name ";
9 "A", "B";
10 "C", "D"];
11 size(students_names)
12 students_names (2, 2)
13 % a string array can also contain a single element
14 % in this case , we do not need the brackets
15 my_name = " Guilherme Salome"
16 size(my_name) % it is still an array
17 % we can find the length of a string with the strlength

function
18 strlength (my_name)
19 % creating a string array that also has numbers will
20 % implicitely convert numbers to strings
21 data = [" Parameters ", 1, 2, 3];

Let’s explore some of the common operations we might perform with strings. A full
list of functions that operate on strings are available on the reference page for characters
and strings.

1 % we can append a string to string arrays
2 first_names = [" Mary", "John", "Paul "]
3 full_names = first_names + " Smith"
4 % split strings
5 split_sentence = split (" This is a sentence about to be split

")
6 % split can be used to clean csv data

Page 16

https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/characters-and-strings.html

Econ890-01 Matlab Summer 2019

7 csv_data = "1.2 , 3.2, -0.5, 5.3"
8 split_data = split(csv_data , ',')
9 % join strings
10 a_burguer = join ([" Bread", "Tomato", " Lettuce ", " Burguer ", "

Cheese", ...
11 "Bread "])
12 % if a command is too big for a single line , we can use
13 % the ... notation to continue it in the next line
14
15 % joining strings can be useful to store data in the csv file
16 data = [1.2; 3.2; -0.5; 5.3];
17 % the text manipulation functions apply to string arrays
18 % so we need to convert the numbers to a string array
19 data_string = string(data)
20 csv_data = join(data_string , ',')
21 % sorting strings
22 sort(full_names)

We can now display our parameter estimates using string arrays:
1 % compare the true betas to the estimates
2 disp(horzcat ([" True Values "; 0; beta], [" Estimates "; beta_hat

]))

3.5.4 Table

We can create a better display by using a table. A table contains rectangular data that
is column-oriented. We can create a table to display the true parameter values and their
estimates. We create a table by passing it vectors with the values, each vector will be
a column in the table. Additionally, we can pass a string array containing the column
names.

1 % script: test_linreg_ols .m
2 % Generates data from the linear model y = X*beta + epsilon ,
3 % given the true beta values. Estimates beta using the

function
4 % linreg_ols and displays a table comparing true values to
5 % parameters .
6
7 % number of rows and columns
8 nrows = 100;
9 ncols = 5;
10 % true betas
11 beta = [-1; 2; 0.5; 3; 0.1];
12 % generate data for X, epsilon and y
13 X = zeros(nrows , ncols);
14 epsilon = zeros(nrows , 1);
15 y = zeros(nrows , 1);
16 for i = 1: nrows

Page 17

https://www.mathworks.com/help/matlab/ref/table.html#d117e1339894

Econ890-01 Matlab Summer 2019

17 X(i, :) = rand (1, 5);
18 epsilon (i) = randn ();
19 y(i) = X(i ,:)*beta + epsilon (i);
20 end
21 % estimate the betas from X and y
22 beta_hat = linreg_ols (y, X, true);
23 % display a table with the true parameters and estimates
24 estimates = table ([0; beta], beta_hat , 'VariableNames ', ["

Parameters ", ...
25 " Estimates "]);
26 disp(estimates)

We can now modify this script to see what happens to the estimates when the number
of data points increases, or when the number of parameters increases and so on. We
have covered most of the basics of Matlab by coding the linreg_ols function and the
test_linreg_ols.m script.

4 Standard Errors for OLS Estimates
We will now extended the linreg_ols function to compute standard errors for the pa-
rameter estimates and the t-statistics.

Under the classical assumptions, the standard error of the OLS estimates (Equation
1.4.4 in Hayashi (2000)) is given by:

SE(β̂i) =
√
s2 · [(X ′X)−1][i,i]

where s2 (Equation 1.2.13 in Hayashi (2000)) is computed from the residuals of the
estimation:

e ≡ y −Xβ̂

s2 ≡ e′e

n−K
Let’s implement this estimator in the linreg_ols function:

1 % linreg_ols .m
2 function [beta , s2 , stderr] = linreg_ols (y, X, add_intercept)
3 % Returns :
4 % beta: A Kx1 vector of the estimated beta coefficients
5 % s2: Estimate of the residual variance
6 % stderr: A Kx1 vector of the estimators of the standard

errors
7 % of the beta estimates
8 if add_intercept
9 X = horzcat (ones(size(X, 1), 1), X);
10 end
11 % compute inv(X'X) just once (used multiple times)
12 XX = X'*X;
13 % equivalent to inv(X'X) but faster and more numerically

stable

Page 18

Econ890-01 Matlab Summer 2019

14 XXinverse = XX\eye(length(XX));
15 beta = XXinverse *X'*y;
16 % estimate Var(beta_hat |X)
17 e = y - X*beta;
18 s2 = (e'*e)/(size(X, 1) - size(X, 2));
19 stderr = diag ((s2* XXinverse)^0.5);
20 end

Now, the t-statistic for the null-hypothesis of insignificant coefficients is:

ti ≡
β̂i

SE(β̂i)
∼ tn−K

To compute the p-value for the test (see Pages 38 and 39 of Hayashi (2000)) we need the
cumulative density function (cdf) of the student’s T distribution, which is available in
the function tcdf.

1 % linreg_ols .m
2 function [beta , s2 , stderr , t_stat , p_value] = linreg_ols (y,

X, add_intercept)
3 % LINREG_OLS estimates beta in the linear regression y = X*

beta + epsilon
4 % via ordinary least squares
5 %
6 % Args:
7 % y: A nx1 vector of dependent variables
8 % X: A nxK matrix of independent variables
9 % add_intercept : A boolean variable . If true , then a

column of
10 % ones is added to X, so that an intercept for the

linear
11 % regression is estimated .
12 %
13 % Returns :
14 % beta: A Kx1 vector of the estimated beta coefficients
15 % s2: Estimate of the residual variance
16 % stderr: A Kx1 vector of the estimators of the standard

errors
17 % of the beta estimates
18 % t_stat: A Kx1 vector with the t- statistics for the null
19 % hypothesis that each beta is zero (separately)
20 % p_value : A Kx1 vector with the p-values for the t-test
21 %
22 % Examples :
23 % y = [1;2;3];
24 % X = rand (3);
25 % beta = linreg_ols (y, X, true)
26 %
27 % Reference :
28 % Equation 1.2.5 in Hayashi , F. (2010).

Page 19

Econ890-01 Matlab Summer 2019

29 % Econometrics . Princeton University Press. isbn:
9780691010182.

30 if add_intercept
31 X = horzcat (ones(size(X, 1), 1), X);
32 end
33 % compute inv(X'X) just once (used multiple times)
34 XX = X'*X;
35 % equivalent to inv(X'X) but faster and more numerically

stable
36 XXinverse = XX\eye(length(XX));
37 % number of observations and explanatory variables
38 n = size(X, 1);
39 K = size(X, 2);
40 beta = XXinverse *X'*y;
41 % estimate Var(beta_hat |X)
42 e = y - X*beta;
43 s2 = (e'*e)/(n - K);
44 stderr = diag ((s2* XXinverse)^0.5);
45 % t- statistics
46 t_stat = beta ./ stderr;
47 p_value = (1 - tcdf(abs(t_stat), n - K))*2;
48 end

5 Organizing the Regression Results in an Object
We could further extend the linreg_ols function to compute all the other statistics
commonly found in other specialized statistics software. Every time we add a new com-
putation to the function, we would have to extend the number of outputs. When there
are too many outputs in a function, we need a better way to organize them. To organize
multiple outputs of a function we can use a struct.

A struct (structure array) is a data type that groups other data by fields. Each field
has a name and can contain any type of data. We access fields in a structure array with
the . notation. Let’s create a simple struct:

1 % data to store
2 beta_hat = [1;2;3];
3 stderr = [0.5 , 0.3, 0.43];
4 % create a structure named results
5 results .b = beta_hat ;
6 results .se = stderr;
7 % access the values in the struct
8 results .b
9 results .se
10 % creating a struct using the struct keyword
11 results = struct('b', beta_hat , 'se', stderr);
12 results .b
13 results .se

Page 20

https://www.mathworks.com/help/matlab/ref/struct.html

Econ890-01 Matlab Summer 2019

14 % creating a struct with empty fields (possibly to be filled
later)

15 results = struct('b', [], 'se', []);
16 results .b
17 results .b = beta_hat ;
18 results .b

We can use a struct to easily organize the output of linreg_ols:
1 % linreg_ols .m
2 function results = linreg_ols (y, X, add_intercept)
3 % LINREG_OLS estimates beta in the linear regression y = X*

beta + epsilon
4 % via ordinary least squares
5 %
6 % Args:
7 % y: A nx1 vector of dependent variables
8 % X: A nxK matrix of independent variables
9 % add_intercept : A boolean variable . If true , then a

column of
10 % ones is added to X, so that an intercept for the

linear
11 % regression is estimated .
12 %
13 % Returns :
14 % results : A struct with the following fields:
15 % beta: A Kx1 vector of the estimated beta coefficients
16 % s2: Estimate of the residual variance
17 % stderr: A Kx1 vector of the estimators of the

standard
18 % errors of the beta estimates
19 % t_stat: A Kx1 vector with the t- statistics for the

null
20 % hypothesis that each beta is zero (separately)
21 % p_value : A Kx1 vector with the p-values for the t-

test
22 %
23 % Examples :
24 % y = [1;2;3];
25 % X = rand (3);
26 % beta = linreg_ols (y, X, true)
27 %
28 % Reference :
29 % Equation 1.2.5 in Hayashi , F. (2010).
30 % Econometrics . Princeton University Press. isbn:

9780691010182.
31 if add_intercept
32 X = horzcat (ones(size(X, 1), 1), X);
33 end

Page 21

Econ890-01 Matlab Summer 2019

34 % compute inv(X'X) just once (used multiple times)
35 XX = X'*X;
36 % equivalent to inv(X'X) but faster and more numerically

stable
37 XXinverse = XX\eye(length(XX));
38 % number of observations and explanatory variables
39 n = size(X, 1);
40 K = size(X, 2);
41 beta = XXinverse *X'*y;
42 % estimate Var(beta_hat |X)
43 e = y - X*beta;
44 s2 = (e'*e)/(n - K);
45 stderr = diag ((s2* XXinverse)^0.5);
46 % t- statistics
47 t_stat = beta ./ stderr;
48 p_value = (1 - tcdf(abs(t_stat), n - K))*2;
49 % create results struct
50 results = struct('b', beta , 's2', s2 , 'stderr ', stderr , ...
51 't_stat ', t_stat , 'p_value ', p_value);
52 end

While a struct can be very useful to organize data, it is not the fastest data type available
in Matlab and should not be overused.

6 Validating Input and Debugging
The linreg_ols function is well documented and provides the bare bones for linear
regressions. However, it is missing input validation. What should linreg_ols return if
the matrix X has more columns than lines? Or if y and X do not have the same number
of rows?

6.1 Validating Input
We can validate data with conditionals, and if something fails the validation, we throw
an error. In Matlab, we can throw an error with the function error, which takes a string
as input and displays it to the user while interrupting the execution of the code. We can
add the following lines to the beginning of the linreg_ols function:

1 % linreg_ols .m
2 function results = linreg_ols (y, X, add_intercept)
3 %% Input validation
4 if size(y, 1) ~= size(X, 1)
5 error ("y and X have a different number of rows ")
6 end
7 if size(X, 1) < size(X, 2)
8 error ("X has less rows than columns ")
9 end
10 %% Code to run after inputs are validated ...
11 end

Page 22

https://www.mathworks.com/help/matlab/ref/error.html

Econ890-01 Matlab Summer 2019

If the inputs fail the validation, the code is interrupted and a message is displayed in red
so that the user can take action to fix the issues. It is important that the message is clear
and identifies the issue as directly as possible.

Observe the use of two percentage symbols instead of one. Lines that start with %%
are also comments, but Matlab consider these lines as the start of a section. A section is
just a tool to organize code in .m files and has no effect on the code.

Now, what happens if we forget to specify whether we want an intercept? That is, we
execute linreg_ols(y, X). In this case, add_intercept is a required input, so Matlab
will warn you that there are not enough input arguments. We can see what happens in
detail by using the debugging features Matlab provides.

6.2 Debugging
Debugging in the Matlab IDE is done by setting breakpoints, and then executing your
code normally. When the code reaches a breakpoint, the execution is paused and you
have access to the variables available at that point in your code. You can then choose
to continue executing the code in different ways. You can continue the execution line
by line, continue until where the cursor is at, or continue until the code finishes or finds
another breakpoint.

You can add a breakpoint by clicking right next to the number line in the code editor.
See Figure 4 on how to add a breakpoint. When you click a red circle will show up
indicating that a breakpoint was added. You can remove breakpoints by clicking on the
red circles.

Figure 4: Debugging in Matlab by Adding Breakpoints.

Now, in the Command Window execute linreg_ols(y, X). The code will start exe-
cuting and it will stop at the first breakpoint. A green arrow will indicate where the

Page 23

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html

Econ890-01 Matlab Summer 2019

execution paused, and at the Command Window you will be able to run any code and
inspect the values of the variables. See Figure 5 where the code was paused at the first
breakpoint.

Figure 5: Debugging: Execution Paused at Breakpoint.

Notice that even though we called linreg_ols without supplying add_intercept,
the function still executes. You can continue the execution by clicking on the button
"Step", see Figure 6.

Keep clicking on "Step" until the code is paused at the third breakpoint. At this time,
the variable add_intercept is not defined, and if you continue the execution you will get
an error message.

Debugging is useful when dealing with large amounts of code and provides a way
to ascertain the value of variables in your program. The code for linreg_ols will run
even if the add_intercept variable is not passed, but will raise an error as soon as this
variable is required. We can modify our code to allow add_intercept to be truly an
optional variable, so that if it is omitted some default behavior will occur.

6.3 Optional Variables and Default Values
In Matlab, we can add optional variables to a function by passing the keyword varargin
as an input. Then, inside the function, a variable named varargin is available and
contains all optional arguments passed to it. Since optional arguments could be of any
type, varargin must be able to hold different types of data.

In Matlab, a cell array is a data type that can hold data of various data types, and
is the data type used for varargin. A cell array is similar to a number array and is
indexed in the same way, but each element of a cell array is a cell, and a cell can
have any data type. That is, a single cell can hold a number, a character, a string, or
even other arrays. We can create a cell array with braces { }:

Page 24

https://www.mathworks.com/help/matlab/ref/varargin.html
https://www.mathworks.com/help/matlab/ref/cell.html?s_tid=doc_ta

Econ890-01 Matlab Summer 2019

Figure 6: Debugging: Continue Execution.

1 % create a cell array
2 data = {" Parameters ", [1, 2, 3]}
3 % use () to refer to cells , not their contents
4 data (1, 1)
5 data (1, 2)
6 % to access the actual contents of a cell index with {}
7 data {1, 1}
8 data {1, 2}

We can modify linreg_ols to accept optional arguments using varargin. Inside
linreg_ols, the variable varargin is a cell array holding any extra inputs passed to the
function. If no extra input was passed, then varargin is an empty cell array. We can
check whether varargin is empty with the function isempty. To let the default behavior
of the function be adding the intercept, we can verify if varargin is empty, and if it is
we add the intercept.

1 % linreg_ols .m
2 function results = linreg_ols (y, X, varargin)
3 %% Input validation
4 if size(y, 1) ~= size(X, 1)
5 error ("y and X have a different number of rows ")
6 end
7 if size(X, 1) < size(X, 2)
8 error ("X has less rows than columns ")
9 end
10 %% Add Intercept if Required
11 if isempty (varargin) || (varargin {1} == true):

Page 25

Econ890-01 Matlab Summer 2019

12 X = horzcat (ones(size(X, 1), 1), X);
13 end
14 %% Computations
15 % compute inv(X'X) just once (used multiple times)
16 XX = X'*X;
17 % equivalent to inv(X'X) but faster and more numerically

stable
18 XXinverse = XX\eye(length(XX));
19 % number of observations and explanatory variables
20 n = size(X, 1);
21 K = size(X, 2);
22 beta = XXinverse *X'*y;
23 % estimate Var(beta_hat |X)
24 e = y - X*beta;
25 s2 = (e'*e)/(n - K);
26 stderr = diag ((s2* XXinverse)^0.5);
27 % t- statistics
28 t_stat = beta ./ stderr;
29 p_value = (1 - tcdf(abs(t_stat), n - K))*2;
30 % create results struct
31 results = struct('b', beta , 's2', s2 , 'stderr ', stderr , ...
32 't_stat ', t_stat , 'p_value ', p_value);
33 end

It is possible to tie together optional inputs and input validation.

6.4 Parsing Inputs
Matlab has a built-in way to do input parsing and allowing optional inputs: inputParser.
The inputParser is an object created inside a function, which takes care of parsing
inputs.

We use the inputParser by first creating a parser object. Then, we tell this parser
object what are the inputs the function should receive. For example, we tell the parser
object it must receive a variable named y, it must receive a variable named X, and
that it could receive a variable named intercept. We can also tell the parser object
what conditions each variable must satisfy for it to be accepted and the function to run
normally. We then tell the parser object to parse the inputs, and the parsed inputs
will be available in the parser object as a struct. Let’s do an example:

1 % example_inputparser .m
2 function example_inputparser (arg1 , arg2 , varargin)
3 % create the parser object
4 parser = inputParser ;
5 % add a required argument to the parser: arg1
6 addRequired (parser , 'arg1 ');
7 % add a required argument to the parser: arg2
8 addRequired (parser , 'arg2 ');
9 % add an optional argument to the parser
10 addOptional (parser , 'intercept ', true);

Page 26

https://www.mathworks.com/help/matlab/ref/inputparser.html

Econ890-01 Matlab Summer 2019

11 % actually parse the inputs
12 parse(parser , arg1 , arg2 , varargin {:});
13 inputs = parser. Results ;
14 % display the inputs
15 disp ({ inputs.arg1 , inputs.arg2 , inputs. intercept });
16 end

The inputParser code above is quite more extensive than what we had before, but the
code itself is also very clear on what it is doing (it is self-documenting). We create the
parser object, and add two required arguments with the addRequired function. The
addRequired function informs the parser object that it must receive two variables, the
first variable should receive the name arg1 and the second variable should receive the
name arg2. Then, we call addOptional to inform the parser object that it can receive
a third variable, and if it does, this variable should be named intercept. If no third
variable is received, then the variable intercept should be created and its value should
be true. Test the function by calling:

1 example_inputparser (1, 2)
2 example_inputparser (1, 2, false)
3 example_inputparser ()

The functions addRequired and addOptional define inputs that must appear in
the correct order (positional arguments). While addRequired defines required inputs,
addOptional defines optional inputs, but both inputs are positional arguments. How-
ever, we can also define inputs that can come in different order, but to do so these inputs
must also be named (name-value pair arguments). We can add these name-value pair
inputs with the addParameter function:

1 % example_inputparser .m
2 function example_inputparser (arg1 , arg2 , varargin)
3 % create the parser object
4 parser = inputParser ;
5 % add a required argument to the parser: arg1
6 addRequired (parser , 'arg1 ');
7 % add a required argument to the parser: arg2
8 addRequired (parser , 'arg2 ');
9 % add an optional argument to the parser
10 addOptional (parser , 'intercept ', true);
11 % add a name -value pair input to the parser
12 addParameter (parser , 'cov_type ', 'standard ');
13 % actually parse the inputs
14 parse(parser , arg1 , arg2 , varargin {:});
15 inputs = parser. Results ;
16 % display the inputs
17 disp ({ inputs.arg1 , inputs.arg2 , inputs.intercept , inputs.

cov_type });
18 end

The order for inputs is always the following: required arguments, optional arguments,
name-value pairs.

Page 27

https://en.wikipedia.org/wiki/Self-documenting_code

Econ890-01 Matlab Summer 2019

The advantage of using inputParser is that we can also do input validation at the
same time. Each of the functions addRequired, addOptional and addParameter can
take a validation function that is used to check whether the inputs are valid. Let’s add
input validation to example_inputparser:

1 % example_inputparser .m
2 function example_inputparser (arg1 , arg2 , varargin)
3 % create the parser object
4 parser = inputParser ;
5 % add a required argument to the parser: arg1
6 addRequired (parser , 'arg1 ', @ validate_arg1);
7 % add a required argument to the parser: arg2
8 addRequired (parser , 'arg2 ', @ validate_arg2);
9 % add an optional argument to the parser
10 addOptional (parser , 'intercept ', true , @ validate_intercept);
11 % add a name -value pair input to the parser
12 addParameter (parser , 'cov_type ', 'standard ', @

validate_cov_type);
13 % actually parse the inputs
14 parse(parser , arg1 , arg2 , varargin {:});
15 inputs = parser. Results ;
16 % display the inputs
17 disp ({ inputs.arg1 , inputs.arg2 , inputs.intercept , inputs.

cov_type });
18 end
19
20 %% Functions for input validation
21 % these functions must return a boolean value or throw an

error
22 function bool = validate_arg1 (arg1)
23 bool = isnumeric (arg1);
24 end
25
26 function bool = validate_arg2 (arg2)
27 bool = isnumeric (arg2) && size(arg2 , 1) >= size(arg2 , 2);
28 end
29
30 function bool = validate_intercept (intercept)
31 bool = islogical (intercept) && length(intercept) == 1;
32 end
33
34 function bool = validate_cov_type (cov_type)
35 covs = [" standard ", "White", "HAC "];
36 bool = ischar(cov_type) && ismember (cov_type , covs);
37 end

The functions declared in the section "Functions for input validation" are passed as ar-
guments to the functions addRequired, addOptional and addParameter. To pass a
function as an argument to another function we use the @ operator in front of the func-

Page 28

Econ890-01 Matlab Summer 2019

tion name. When we use the @ syntax with the function name we are creating a function
handle. A function handle allows a function to be passed around as any other variable,
and calling a function handle is the same as calling the function itself.

Notice that most of the functions above have just one line of code. We can simplify
the code by using anonymous functions.

6.5 Anonymous Functions
An anonymous function is a function that is written in a single line and is itself a function
handle. We can create an anonymous function using the syntax @(inputs) code;. For
example:

1 % create an anonymous function and assign to a variable
2 square_root = @(x) x.^0.5;
3 % call the anonymous function
4 square_root (4)
5 % since the anonymous function is a function handle
6 % we can pass it as inputs to other functions
7 integral (square_root , 0, 1)
8 % we can create an anonymous within an anonymous function
9 poly_integral = @(a) integral (@(x) (a*x.^2 + x + 2), 0, 1);

The validating functions in example_inputparser can be substituted by anonymous
functions, which makes the code clearer. Let’s modify example_inputparser to make
use of anonymous functions:

1 % example_inputparser .m
2 function example_inputparser (arg1 , arg2 , varargin)
3 % create the parser object
4 parser = inputParser ;
5 % add a required argument to the parser: arg1
6 addRequired (parser , 'arg1 ', @ isnumeric);
7 % add a required argument to the parser: arg2
8 addRequired (parser , 'arg2 ', @(x) (isnumeric (x) && size(x, 1)

>= size(x, 2)));
9 % add an optional argument to the parser
10 addOptional (parser , 'intercept ', true , @(x) (islogical (x) &&

length(x) == 1));
11 % add a name -value pair input to the parser
12 addParameter (parser , 'cov_type ', 'standard ', @

validate_cov_type);
13 % actually parse the inputs
14 parse(parser , arg1 , arg2 , varargin {:});
15 inputs = parser. Results ;
16 % display the inputs
17 disp ({ inputs.arg1 , inputs.arg2 , inputs.intercept , inputs.

cov_type });
18 end
19
20 %% Functions for input validation

Page 29

https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html
https://www.mathworks.com/help/matlab/matlab_prog/anonymous-functions.html

Econ890-01 Matlab Summer 2019

21 % these functions must return a boolean value or throw an
error

22 function bool = validate_cov_type (cov_type)
23 covs = [" standard ", "White", "HAC "];
24 bool = ischar(cov_type) && ismember (cov_type , covs);
25 end

We can make use of these features to validate the input for linreg_ols:
1 % linreg_ols .m
2 function results = linreg_ols (y, X, varargin)
3 %% Input validation
4 parser = inputParser ;
5 addRequired (parser , 'y', @ isnumeric)
6 addRequired (parser , 'X', @ validate_X);
7 addParameter (parser , 'intercept ', true , @ islogical);
8 parse(parser , y, X, varargin {:});
9 y = parser. Results .y;
10 X = parser. Results .X;
11 if size(y, 1) ~= size(X, 1)
12 error ("y and X have a different number of rows ")
13 end
14 %% Add Intercept if Required
15 if parser. Results . intercept
16 X = horzcat (ones(size(X, 1), 1), X);
17 end
18 %% Computations
19 % compute inv(X'X) just once (used multiple times)
20 XX = X'*X;
21 % equivalent to inv(X'X) but faster and more numerically

stable
22 XXinverse = XX\eye(length(XX));
23 % number of observations and explanatory variables
24 n = size(X, 1);
25 K = size(X, 2);
26 beta = XXinverse *X'*y;
27 % estimate Var(beta_hat |X)
28 e = y - X*beta;
29 s2 = (e'*e)/(n - K);
30 stderr = diag ((s2* XXinverse)^0.5);
31 % t- statistics
32 t_stat = beta ./ stderr;
33 p_value = (1 - tcdf(abs(t_stat), n - K))*2;
34 % create results struct
35 results = struct('b', beta , 's2', s2 , 'stderr ', stderr , ...
36 't_stat ', t_stat , 'p_value ', p_value);
37 end
38
39 %% Functions for Input Validation

Page 30

Econ890-01 Matlab Summer 2019

40 function bool = validate_X (X)
41 bool = isnumeric (X);
42 if size(X, 1) < size(X, 2)
43 error ("X has less rows than columns ");
44 end
45 end

We can now call linreg_ols with or without a name-value pair specifying the inclusion
of an intercept:

1 linreg_ols (y, X)
2 linreg_ols (y, X, 'intercept ', true)

7 Importing Data and Saving Results
We will now use our linreg_ols function with a real data set. Download this data set on
housing prices in California, and save the file in your working folder. This data set was
first used in Pace and Barry (1997), and was later modified for use in Géron (2017). The
data contains information on household prices in California in 1990 (based on the census
at that time). The first line of the file contains the name of the explanatory variables.

7.1 Importing Data
Matlab has various built-in functions for importing data of different types. We can import
.csv files to Matlab with the readmatrix function4.

1 data = readmatrix ('housing .csv ');

The default behavior of readmatrix is to infer the type of the file from its extension,
in this case .csv. Knowing the file extension, the function knows that the values are
comma-separated, and the function also attempts to detect if there is a header line and
the number of variables (columns) to be imported. The housing.csv data is mostly
numeric, with the exception of the last column. The function readmatrix imports the
data into a numeric matrix, which works well for the first 9 columns of housing.csv.
However, the last column of the file contains categorical data, which is not automatically
converted to numbers, and so Matlab treats all its values as NaN. If we are not interested
in using the last column we could work with readmatrix.

The resulting data matrix has all the information from housing.csv, with the ex-
ception of the names of the variables and the last column of the file. We can keep all the
columns of the data and the names of the variables if we import the data to a table in-
stead of a numeric array. To do so, we use the function readtable. As with readmatrix,
the function readtable can figure out the delimiter, header and number of variables from
the file extension, but instead of loading the data into a numeric array, it loads the data
into a table.

4There is also a GUI interface for importing data under the menu tab Home, via the button Import
Data. Older versions of Matlab have different functions for importing data. Before the R2019a release,
for example, .csv files could be imported with the function csvread. You can still use csvread, but
readmatrix should be preferred since it is an improved version.

Page 31

https://raw.githubusercontent.com/Salompas/handson-ml/master/datasets/housing/housing.csv
https://raw.githubusercontent.com/Salompas/handson-ml/master/datasets/housing/housing.csv
https://www.mathworks.com/help/matlab/data-import-and-export.html
https://www.mathworks.com/help/matlab/ref/readmatrix.html
https://www.mathworks.com/help/matlab/ref/readtable.html
https://www.mathworks.com/help/matlab/ref/table.html

Econ890-01 Matlab Summer 2019

1 % import housing data
2 data = readtable ('housing .csv ');
3 % verify that everything was imported correctly
4 data (1:5 , :)
5 % notice that the names of the variables are also
6 % displayed , and that the last is correctly imported
7
8 % data in a table can be accessed by normal indexing as in a
9 % numeric array
10 data (1:10 , 1)
11 data (1:10 , 2)
12 data (1:10 , 10)
13 % but we can also access the data like in a struct , where the

field
14 % names are the variable names
15 data. longitude
16 data. longitude (1:5)
17 data. ocean_proximity (1:5)
18 % notice that the ocean_proximity data is stored as character
19 % arrays in cells
20 % we can convert it to a string array:
21 data. ocean_proximity = string(data. ocean_proximity);
22 data. ocean_proximity (1:10)
23 % we can see all the variable names in a table via its

properties
24 data. Properties . VariableNames
25 % we can access the columns of the table by index with the

names
26 data (1:5 , 'longitude ')
27 % for multiple columns we pass a string array
28 data (1:5 , [" population ", " households ", " median_income "])
29 % similar to cells , when we index with parentheses we do not

get the
30 % actual values stored in a table , but we get a subtable
31 % to get the actual values we use the curly brackets notation
32 data {1:5 , [" population ", " households ", " median_income "]}

The data has a few missing values (added on purpose). We can count how many
lines have missing values with the functions isnan and sum. The function isnan takes a
numeric array and finds all NaN. The function sum can be used to sum across values in
rows or columns (or both) of a matrix.

1 % dimensions of table
2 size(data)
3 % find missing data no the first column
4 sum(isnan(data {:, 1}))
5 % find missing data on all columns , except the last one
6 sum(isnan(data {:, 1:9}))

Page 32

Econ890-01 Matlab Summer 2019

7 % we see that there are 207 missing data points for the
8 % total_bedrooms variable
9 % indeed:
10 sum(isnan(data. total_bedrooms))
11 % let 's remove these rows from the table
12 % first we need to find the indices for the rows with missing

values
13 missing_values = isnan(data. total_bedrooms);
14 % missing_values is a boolean array , it has 1's where there

are
15 % NaNs in the data. total_bedrooms array
16 % we can use this logical (boolean) array to index the

original
17 % table and select only the rows without NaN 's
18 data_no_missing = data (~ missing_values , :);
19 % this gives us a new table , from which we can extract data

for the regression

We can also remove rows with missing values (represented by NaN) automatically using
the function rmmissing:

1 size(data)
2 data_no_missing = rmmissing (data);
3 size(data_no_missing)

Let’s run a regression of the logarithm of the median house value on the logarithm of
the number of bedrooms in the house.

1 results = linreg_ols (log(data. median_house_value), ...
2 log(data. total_bedrooms));
3 disp(results .b);

7.2 Saving Results, Cleaning the Workspace and Loading Vari-
ables

Now that we can generate results from data, we need to save these results. Saving and
loading variables in Matlab can be done with the functions save and load. There are
several ways of using the function save:

1 % Save ALL variables in the workspace
2 save('all_workspace_variables ');
3 % The above creates a file named all_workspace_variables .mat
4 % .mat files can be easily imported with the load function
5
6 % Save only ONE variable
7 save('housing_clean ', 'data_no_missing ');
8 % saves the variable data_no_missing on the file

housing_clean .mat
9
10 % Save MULTIPLE variables

Page 33

https://www.mathworks.com/help/matlab/ref/rmmissing.html
https://www.mathworks.com/help/matlab/matlab_env/save-load-and-delete-workspace-variables.html
https://www.mathworks.com/help/matlab/matlab_env/save-load-and-delete-workspace-variables.html
https://www.mathworks.com/help/matlab/ref/save.html
https://www.mathworks.com/help/matlab/ref/load.html

Econ890-01 Matlab Summer 2019

11 save('data_and_results ', 'data_no_missing ', 'results ');
12 % saves the variables data_no_missing and results in
13 % the file data_and_results .mat

The files created with the function save have the .mat extension and are binary files.
Let’s now clear our workspace to and reload the variables. First, clear the command

window by executing clc. This command simply clears the Command Window so that
you have a clear screen to type commands. You can still use the arrow keys to execute
previous commands. Second, use the special command clear to delete all variables from
the workspace. After executing this command the variables previously created are gone.
It is also possible to clear specific variables by executing clear variable_name. Third,
use load to load the .mat files, which will take the variables stored in those files and
make them available in the workspace.

1 % Load ALL variables from before
2 load('all_workspace_variables .mat ');
3 % Load only the HOUSING variable from before
4 clear;
5 load('all_workspace_variables .mat ', 'housing ');
6 % Notice we pass the name of the variable to load so that

only that
7 % variable is loaded
8 % Load the cleaned housing data
9 clear;
10 load('housing_clean .mat ');
11 % Load the cleaned housing data and the regression results
12 clear;
13 load('data_and_results .mat ');
14 % Load only the regression results
15 clear;
16 load('data_and_results .mat ', 'results ');

Notice that the variables are loaded with their original names.

8 Summary
We have covered the basics of the Matlab programming language. You should be able to:

• Create .m script files to run code

• Work with vectors and matrices

• Do basic computations and linear algebra with numeric arrays

• Create function files

• Use conditionals

• Use for-loops and while-loops

• Generate data from statistical distributions

Page 34

https://www.mathworks.com/help/matlab/ref/clc.html
https://www.mathworks.com/help/matlab/ref/clear.html

Econ890-01 Matlab Summer 2019

• Create arrays for text data

• Present data in a neat manner using table

• Organize function results in struct

• Validate input variables with conditionals

• Debug code with the built-in debugger

• Let functions accept any number of inputs with varargin

• Use inputParser to parse input variables and specify default values

• Pass functions as arguments with function handles

• Simplify small functions with anonymous functions

• Import .csv data

• Clean rows from a table with missing values

• Save variables to .mat files

• Clear the workspace

• Load variables stored in .mat files

9 Assignment
All assignments should be submitted to the Github repository you have been assigned
to. The deadline is July 26th by midnight. You should write a report in Latex with
the solutions to the problems below. If the problem requires you to code, then the code
should also be included in the report. For a quick guide on how to add Matlab code to
your Latex files, refer to the Section "Adding Matlab Code" on this tutorial.

Problem 1 Update the code for generating data to function without loops (vectorization).
To do so, you will need to read the documentation for the random number generator
functions we have used: rand and randn. After vectorizing the problem, verify you get
the same estimates for the parameters as before. For this part, you will need to fix the
generation of random numbers, so that you generate the same random numbers when you
run your code without vectorization and with vectorization. Read the documentation for
the rng function, and if you need more details read about managing the global stream.

Problem 2 Extend linreg_ols to also output the R2 of the regression (see Equation
1.2.18 in Hayashi (2000).

Problem 3 Run the linear regression suggested in Equation (8) of Pace and Barry
(1997).

Page 35

https://guilhermesalome.com/teaching/2018-empirical-methods-in-financial-econometrics/posts/lecture-1-latex.html#org61c35bc
https://www.mathworks.com/help/matlab/ref/rand.html
https://www.mathworks.com/help/matlab/ref/randn.html
https://www.mathworks.com/help/matlab/ref/rng.html
https://www.mathworks.com/help/matlab/math/managing-the-global-stream.html

Econ890-01 Matlab Summer 2019

Problem 4 Matlab has been around since 1984 and has many packages for common
problems. Figure out if Matlab has a function for estimating the parameters of a linear
regression using OLS. If it does, what is the name of the function? How does the function
actually estimate the coefficients? To answer this, you need to look at the code of the
function. You can do so with the special command type. For example, if the name of
the function is ols, then you can execute type ols to see the source code.

Problem 5 When the classical assumption of homoskedasticity fails, we need a differ-
ent estimators for the standard errors of the OLS estimates. White (1980) proposes a
heteroskedasticity-robust estimator for the standard errors of the OLS estimates, which is
now known as White’s standard error. Equation 2.4.1 in Hayashi (2000) shows White’s
standard error:

ŜE(β̂i) ≡
√

1
n

[S−1
xx ŜS

−1
xx][i,i]

There is a slight change of notation in this part of the Hayashi (2000), and x′i is the
ith row of X (xi is a column vector with the explanatory variables in the ith row of X).
The term Sxx is the sample mean of xix

′
i: Sxx = 1

n

∑n
i=1 xix

′
i (Equation 2.3.6 in Hayashi

(2000)). The term Ŝ is an estimator for a matrix of fourth moments, and it is defined as
Ŝ = 1

n

∑n
i=1 e

2
ixix

′
i (Equation 2.5.1 in Hayashi (2000)), and ei is as before (residual for

the ith observation). Implement this estimator in the linreg_ols function. You could
write a local function to estimate White’s standard error in the linreg_ols.m file.

Problem 6 (Optional) Implement the t-test based on White’s standard error. Also, com-
pute the p-value from given the statistic.

Problem 7 Newey and West (1987) proposes another estimator to the standard errors
for the OLS estimates under weaker assumptions. The estimator the authors propose is
robust not only to heteroskedasticity, but also autocorrelation, and is known as the HAC
standard errors. Does Matlab have a function to compute the HAC standard errors? If
so, extend linreg_ols to also compute the HAC standard errors.

Problem 8 (Optional) Implement the t-test based on the HAC standard error. Also,
compute the p-value from given the statistic.

Problem 9 Extend linreg_ols to accept an optional input named cov_type, which
specifies the type of standard errors estimator to report. Use inputParser to do so.

Page 36

https://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://www.mathworks.com/help/matlab/ref/type.html

Econ890-01 Matlab Summer 2019

References
Géron, Aurélien (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems. " O’Reilly Media, Inc.".
url: https://isbnsearch.org/isbn/9781491962299.

Hayashi, F. (2000). Econometrics. Princeton University Press. isbn: 9780691010182. url:
https://books.google.com/books?id=QyIW8WUIyzcC.

Newey, Whitney K. and Kenneth D. West (1987). “A simple, positive semi-definite, het-
eroskedasticity and autocorrelation consistent covariance matrix”. In: Econometrica
55.3, p. 703. url: https://login.proxy.lib.duke.edu/login?url=https:
//search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=
10598.

Pace, R Kelley and Ronald Barry (1997). “Sparse spatial autoregressions”. In: Statistics
& Probability Letters 33.3, pp. 291–297. url: https://doi.org/10.1016/S0167-
7152(96)00140-X.

White, Halbert (1980). “A heteroskedasticity-consistent covariance matrix estimator and
a direct test for heteroskedasticity”. In: Econometrica 48.4, pp. 817–838. url: https:
//www.jstor.org/stable/1912934.

Page 37

https://isbnsearch.org/isbn/9781491962299
https://books.google.com/books?id=QyIW8WUIyzcC
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://login.proxy.lib.duke.edu/login?url=https://search-proquest-com.proxy.lib.duke.edu/docview/214867593?accountid=10598
https://doi.org/10.1016/S0167-7152(96)00140-X
https://doi.org/10.1016/S0167-7152(96)00140-X
https://www.jstor.org/stable/1912934
https://www.jstor.org/stable/1912934

	The Matlab Integrated Development Environment
	Hello World!
	Linear Regression with Ordinary Least Squares
	Numeric Data Types for Numbers
	Vectors and Matrices
	Matrix Operations
	Functions (and Conditionals)
	Conditionals
	Optional Intercept

	Generating Data (and Loops and Text)
	Loops
	Generating Data in a Loop
	Characters and Strings
	Table

	Standard Errors for OLS Estimates
	Organizing the Regression Results in an Object
	Validating Input and Debugging
	Validating Input
	Debugging
	Optional Variables and Default Values
	Parsing Inputs
	Anonymous Functions

	Importing Data and Saving Results
	Importing Data
	Saving Results, Cleaning the Workspace and Loading Variables

	Summary
	Assignment

