
Econ 672 & 872 - Empirical Methods in Financial Econometrics Guilherme Salomé

Python: Numpy

NumPy is a package for scientific computing in Python. It implements an object to
represent N-dimensional arrays (vectors, matrices and higher dimensional matrices). It
also has linear algebra functions and random number generators.

Why do we need Numpy? Python is a dynamically typed language, it infers the type
of a variable at runtime. This means that when Python store variables in memory, it not
only stores the variable’s value, but also its type. Then, when we perform a computation,
like adding two variables (x+y), Python looks up the type of x and the type of y, and
applies the definition of + to those types if it makes sense to do so. If those types are
integers, for example, then Python performs an integer addition. However, if the type of
x is integer, but y is a list, then the operation is not defined and Python will raise an
exception (error). This type of checking is called a runtime type check.

The runtime type check makes programming in Python a pleasure, since you do not
have to worry about types all the time. However, it does lead to inefficiencies when we
start performing operations on large datasets. Numpy solves those inefficiencies.

Numpy introduces a new type of list, called a Numpy array. In an array, all elements
have the same type. This has two benefits. First, the type is only stored once, so
performing operations with numpy is much faster than with Python lists. Second, since
all elements have the same type, their position in the memory is easy to compute. This
means that accessing random elements in a numpy array is quick.

Numpy also provides a set of operations for numpy array, all implemented in C. Arrays
are not required to be 1 dimensional, so the class can also deal with matrices and higher
dimensional arrays. Numpy is the base of other higher-level packages, like pandas and
scipy.

1 Installing and Importing
Numpy comes pre-installed with Anaconda, so all we need to do is import it into Python.
In the jupyter notebook, we can import the package by executing:
import numpy

The import will look for the package named numpy, will find it and load all of its contents.
The methods, variables and objects defined in the Numpy package will be available in
the object numpy.

You will often see the following command being used:
import numpy as np

The code above defines np as an alias for numpy. An alias is often used because it requires
less typing to use numpy.

Page 1

https://docs.scipy.org/doc/numpy/index.html


Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

2 Basics
To create a matrix with numpy we run:
matrix = np . array ( [ [ 0 , 1 , 2 , 3 ] ,

[ 4 , 5 , 6 , 7 ] ] )

This creates a new matrix with dimensions 2 by 4. Notice that np.array takes as input
a list of lists, where each sublist represents a row of a matrix and each element in the
sublist is a different column.

Basic properties of np.ndarray:
type ( matrix )
p r i n t ( f ’ Shape o f matrix = { matrix . shape } ’ )
p r i n t ( f ’Number o f axes = { matrix . ndim} ’ )
p r i n t ( f ’ Total number o f e lements = { matrix . s i z e } ’ )

The elements of the matrix can be accessed by using its indices. Since the matrix has
2 dimensions, we need to give it two indices: an index for the row and an index for the
column. Remember that in Python the indexing starts at 0.
pr in t ( matrix [ 0 , 0 ] ) # element at row 0 and column 0
pr in t ( matrix [ 1 , 3 ] ) # l a s t element o f the 2nd row
pr in t ( matrix [ 1 , −1]) # l a s t element o f the 2nd row
pr in t ( matrix [ −1 , −1]) # element at l a s t row and l a s t

column

We can use : to slice the matrix and obtain all values of a certain row or of a certain
column:
pr in t ( matrix [ 0 , : ] ) # f i r s t row , a l l columns
p r in t ( matrix [ : , 0 ] ) # a l l rows , f i r s t column
pr in t ( matrix [ 0 , 1 : 3 ] ) # f i r s t row , columns 1 and 2
pr in t ( matrix [ : , 1 : 3 ] ) # a l l rows , columns 1 and 2

We can also select specific columns or rows:
pr in t ( matrix [ : , [ 0 , 3 ] ] ) # a l l rows , f i r s t column and l a s t column

Like the built-in function range, numpy also provides a way to generate a sequence
of numbers with the function np.arange:
vec to r = np . arange (20)
p r i n t ( vec to r )

We can reshape this vector into a matrix:
matrix = vecto r . reshape (4 , 5 )
p r i n t ( matrix )

Notice that when converting a vector into a matrix we need to decide whether to put the
values first into columns, or first into rows. For example, if we have a vector [1, 2, 3, 4]
and want to reshape it into a 2x2 matrix, there are 2 natural possibilities: create the new
matrix by filling each row first, or create the matrix by filling each column first.

Fill Rows:
(

1 2
3 4

)
vs. Fill Columns:

(
1 3
2 4

)

The default in Python is to fill each row before moving to the next (first matrix above).
The behavior is controlled by a keyword argument order given to the reshape method.

Page 2



Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

a = np . arange (4 )
p r i n t ( a )
# D i f f e r e n t ways o f re shap ing
# f i l l each row , row by row
a . reshape ( ( 2 , 2) , order=’C ’ ) # t h i s i s a l s o the d e f a u l t
# f i l l each column , column by column
a . reshape ( ( 2 , 2) , order=’F ’ )

We can also get the type of the values stored in the matrix:
pr in t ( matrix . dtype )

On many cases we will want to create an empty array and populate as the code is
executed. We can create arrays pre-filled with ones or zeros via:
ones = np . ones ( ( 4 , 5) )
z e r o s = np . z e ro s ( ( 10 , 3) )

The functions np.ones and np.zeros take a tuple as input, which defines the shape of
the matrix to be created.

3 Data Types
The data type of values stored in a matrix are usually inferred when the values are
assigned:
matr ixOf Integer s = np . array ( [ [ 0 , 1 ] ,

[ 3 , 4 ] ] )
p r i n t ( matr ixOf Integer s . dtype )
matr ixOfFloats = np . array ( [ [ 1 . 0 , 2 . 3 ] ,

[ −5.1 , 9 . 8 2 3 4 ] ] )
p r i n t ( matr ixOfFloats . dtype )

The first matrix has the type int64 and the second matrix has the type float64. Notice
that if we try to change a value in the first matrix to a float, it will be implicitly converted
to an integer:
pr in t ( matr ixOf Integer s [ 0 , 0 ] )
matr ixOf Integer s [ 0 , 0 ] = 0 .34
p r in t ( matr ixOf Integer s [ 0 , 0 ] )

We can specify the type of data when we first create the matrix:
matrix = np . array ( [ [ 0 , 1 ] , [ 2 , 3 ] ] , dtype=’ f l o a t 6 4 ’ )
matrix [ 0 , 0 ] = 3 .2
p r i n t ( matrix )

The matrix is initialized with integers, but we specify the type to be a float, so the values
are implicitly converted to floats.

It is also possible to store strings in numpy arrays (matrices):
names = np . array ( [ ’A ’ , ’B ’ , ’C ’ , ’D ’ ] , dtype=’ str_ ’ )
p r i n t ( names . dtype )

Notice that the type is actually "<U1". The "U" stands for "unicode string" and "1" is
the number of characters. Since all values passed to the np.array constructor have just
1 character, numpy assumes all data that we will store on this matrix will have a single
character. This might not be the case, and if we try to store a bigger string:

Page 3



Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

names [ 0 ] = ’ Guilherme ’
p r i n t ( names [ 0 ] )

Instead of storing the entire string, only the first character was stored. We can let numpy
know that we need more space in memory by defining how many characters we need:
names = np . array ( [ ’A ’ , ’B ’ , ’C ’ , ’D ’ ] , dtype=’<U100 ’ )
names [ 0 ] = ’ Guilherme ’
p r i n t ( names [ 0 ] )

Now we can store 100 characters in each element of the matrix.
The complete documentation on specifying data types (dtype) can be found on the

data type objects reference page. Arrays can also hold more than one type, details on
how to hanlde multiple types can be found on the structure arrays reference page.

4 Operations
Arithmetic operations with numpy arrays are always element wise.
a = np . arange (10)
b = np . ones (10) # f l o a t
p r i n t ( f ’Type a = {a . dtype } , b = {b . dtype} ’ )
c = a + b
pr in t ( c )
p r i n t ( f ’Type c = {c . dtype} ’ ) # i m p l i c i t conver s i on o f a to f l o a t
p r i n t ( c ∗10)
p r i n t ( c − 10)
p r i n t ( c ∗∗2)

Notice that ** is the same as pow(c,2).
Comparisons are also done element wise:

pr in t ( c > 5)

Booleans can be used to recover elements of an array:
c [ c >5]

You can recover the indices that satisfy a condition with the np.where function:
i n d i c e s = np . where ( c <= 2)
p r in t ( i n d i c e s )
p r i n t ( c [ i n d i c e s ] )

It is possible to manipulate all elements of an array and accumulate the values:
# some random va lues to stand in as r e tu rn s
r e tu rn s = np . random . random ((78 , 5) )
r e tu rn s /= 100 # d i v i d e s everyth ing by 100
RV = np . sum( re tu rn s ∗∗2 , ax i s =0)
annRV = 100∗np . sq r t (252∗RV)
pr in t ( f ’RV = {RV}\n ’

f ’ annua l i zed RV = {annRV} ’ )

The np.random.random is a function that generates random values in the interval [0, 1).
The np.sum function accumulates over elements in an array by summing them. Calling
np.sum without the axis argument will sum all of the elements in a matrix, resulting in

Page 4

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#arrays-dtypes
https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html#arrays-dtypes
https://docs.scipy.org/doc/numpy/user/basics.rec.html#module-numpy.doc.structured_arrays


Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

a single value. The keyword argument axis=0 instructs the sum to occur along the rows.
Numpy provides many universal mathematical functions, such as np.sqrt for computing
the square root of a number (remember, element wise).

We can find the minimum and maximum values in an array:
pr in t ( f ’Min RV = {np . min (annRV) }\n ’

f ’Max RV = {np . max(annRV) } ’ )
p r i n t ( f ’ Index o f Min = {np . argmin (annRV) }\n ’

f ’ Index o f Max = {np . argmax (annRV) } ’ )

Numpy arrays also implement a multitude of different methods:
x = np . array ( [ 4 , 3 , 2 , 1 ] ) ;
# in−p lace s o r t
x . s o r t ( )
p r i n t ( x )
# common ope ra t i on s
p r i n t ( x . sum ( ) , x . mean ( ) , x . max( ) , x . min ( ) )
# equ iva l en t to
p r i n t (np . sum( x ) , np . mean( x ) , np . max( x ) , np . min ( x ) )
# index o f extremum
pr in t ( x . argmin ( ) , x . argmax ( ) , np . argmin ( x ) , np . argmax ( x ) )
# var iance
x . var ( )
x . std ( )
x . std ( ) == x . var ( ) ∗∗0 .5

Numpy also implements matrix operations:
# Matrix m u l t i p l i c a t i o n
# c r e a t e i d e n t i t y matrix
a = np . eye (2 )
b = np . random . random ( ( 2 , 2) )
p r i n t (np . matmul ( a , b ) )
# The symbol @ i s over loaded f o r matrix m u l t i p l i c a t i o n
p r in t ( a @ b)
p r in t ( a @ b == np . matmul ( a , b ) )
# Matrix t r a n s p o s i t i o n
p r in t (np . t ranspose (b) )
p r i n t (b .T)
# Matrix i n v e r s i o n
c = np . array ( [ [ 1 , 2 ] ,

[ 3 , 4 ] ] )
p r i n t (np . l i n a l g . inv ( c ) )

Numpy also implements other functions, like singular value decomposition (np.linalg.svd),
eigenvalues (np.linalg.eig), Moore-Penrose inverse (np.linalg.pinv), Kronecker prod-
uct (np.kron) and others. For more information on linear algebra with Numpy check the
linear algebra reference page.

5 Mutability and Copying Arrays
Create a new array:
x = np . array ( [ 4 , 3 , 2 , 1 ] , dtype=’ f l oat_ ’ )
# arrays are mutable
x [ 0 ] = 10 .32

Page 5

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html


Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

pr in t ( x )

What happens when we assign a new name to x?
a = x
a [ 1 ] = −2.34
# What i s pr in ted ?
p r in t ( a , a [ 1 ] , x [ 1 ] )

Notice that x is a name to an array, and a is a reference to x. Thus, a is also a name to
the exact same array.
a == x

This is a sensible behavior for memory efficiency. If you do need to make a copy of an
array, then:
a = np . copy ( a ) # deep copy
a [ 0 ] = −0
p r in t ( a , x )

6 Additional Functionality
Numpy has several functions that can be applied element-wise:
x = np . array ( [ 1 , 2 , 3 , 4 ] )
# v e c t o r i z e d f u n c t i o n s ( element−wise )
p r i n t (np . s i n ( x ) ) # i m p l i c i t type conver s i on
p r in t (np . l og ( x ) , np . exp ( x ) )

These functions are referred to as universal functions (ufunc). They are universal in the
sense that they work with arrays (work with many elements).

We can compose these operations:
# +, −, / , ∗ and ∗∗ a l s o work element−wise
p r i n t (np . l og ( x + 1) ∗3/np . exp ( x ) ∗∗2)

If a function is not universal (also known as vectorized), applying it on an array will
lead to error:
de f f ( x ) :

r e turn 1 i f x > 0 e l s e 0
f ( x )

The issue here is that bool(x) is not defined for numpy arrays. While x > 0 works,
the part that says if x > 0 is equivalent to if bool(x > 0), which is undefined for
arrays. We can vectorize a function:
f = np . v e c t o r i z e ( f )
f ( x )

The function np.vectorize is basically creating a for-loop around f:
r e s = np . z e ro s ( l en ( x ) )
f o r i in np . arange ( l en ( x ) ) :

r e s [ i ] = f ( x [ i ] )
p r i n t ( r e s )

Page 6



Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

We can accomplish the result of the function f using np.where:
help (np . where )
# re tu rns 1 s where x > 0 , and 0 otherwi se
np . where ( x > 0 , 1 , 0)

Remember that comparisons are element-wise and can be used for slicing:
# comparisons are element−wise
a = np . array ([ −1 , 0 , 1 ] )
b = np . array ( [ 1 . 2 , −2.3 , 3 ] )
a > b # i m p l i c i t type conver s i on f o r a
a > 0 .2
# s l i c e based on comparisons
a [ a > 0 . 2 ]
a [ a > b ]

The Numpy subpackage np.random implements several random number generators.
You can get more information about them with help:
help (np . random )

The Numpy subpackage np.linalg has other linear algebra tools. You can also use
help to learn more about them:
# numpy subpackage np . l i n a l g implements l i n e a r a lgebra f u n c t i o n s
he lp (np . l i n a l g )

A table that compares commands in Matlab to commands in Numpy is available here.
A good overview of many numpy features is available here.

7 Implementing the OLS Estimator for Linear Re-
gressions

We now know everything we need to know about Python to estimate parameters in a
linear regression:
de f l i n r e g _ o l s (x , y ) :

a s s e r t x . shape [ 0 ] == y . shape [ 0 ] , " D i f f e r e n t number o f rows "
beta = np . l i n a l g . inv ( x .T @ x ) @ x .T @ y
return beta

Generate some test data to test linreg_ols:
# 1000 data po in t s with a constant + 3 explanatory v a r i a b l e s
x = np . hstack ( ( np . ones ( (1000 , 1) ) , np . random . random ((1000 , 3) ) ) )
p r i n t ( x )
beta = np . random . random ( ( 4 , 1) )
e p s i l o n = np . random . random ((1000 , 1) )
y = x @ beta + e p s i l o n
p r in t ( y )

Estimate beta and compare the estimate to the true value:
beta_hat = l i n r e g _ o l s (x , y )
p r i n t (np . hstack ( ( beta , beta_hat ) ) )

Let’s update linreg_ols so that adding a constant to x is automatic:

Page 7

https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy/user/quickstart.html#quickstart-tutorial


Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

de f l i n r e g _ o l s (x , y ) :
a s s e r t x . shape [ 0 ] == y . shape [ 0 ] , " D i f f e r e n t number o f rows "
x = np . hstack ( ( np . ones ( ( x . shape [ 0 ] , 1) ) , x ) )
beta = np . l i n a l g . inv ( x .T @ x ) @ x .T @ y
return beta

Test it again:
x = x [ : , 1 : ]
p r i n t ( x )
p r i n t ( x . shape , y . shape )
beta_hat = l i n r e g _ o l s (x , y )
p r i n t ( beta_hat )

Update linreg_ols so that adding a constant can be optionally specified by the user:
de f l i n r e g _ o l s (x , y , i n t e r c e p t=True ) :

a s s e r t x . shape [ 0 ] == y . shape [ 0 ] , " D i f f e r e n t number o f rows "
i f i n t e r c e p t :

x = np . hstack ( ( np . ones ( ( x . shape [ 0 ] , 1) ) , x ) )
beta = np . l i n a l g . inv ( x .T @ x ) @ x .T @ y
return beta

# i f no i n t e r c e p t i s suppl i ed , than a column o f ones i s added
pr in t ( l i n r e g _ o l s (x , y ) )
p r i n t ( l i n r e g _ o l s (x , y , True ) )
p r i n t ( l i n r e g _ o l s (x , y , 1) )
p r i n t ( l i n r e g _ o l s (x , y , Fa l se ) )

Always remember to add documentation to your functions (your future self will thank
you):
de f l i n r e g _ o l s (x , y , i n t e r c e p t=True ) :

" " " Est imates l i n e a r r e g r e s s i o n c o e f f i c i e n t s with OLS.

Est imates beta in a l i n e a r r e g r e s s i o n : y = x @ beta + e p s i l o n .
Uses the ord inary l e a s t squares e s t imator .

Args :
x (np . array ) : A nxK matrix o f exp lanatory v a r i a b l e s
y (np . array ) : A nx1 matrix o f dependent v a r i a b l e s
i n t e r c e p t ( bool ) : S p e c i f i e s whether to es t imate i n t e r c e p t

c o e f f i c i e n t

Returns :
beta (np . array ) : A Kx1 vec to r with the beta e s t imate s

Rai ses :
As se r t i onErro r : x and y have d i f f e r e n t number o f rows
LinAlgError : i f x i s a s i n g u l a r matrix

Example :
l i n r e g _ o l s (np . array ( [ [ 1 , −2] , [ 0 . 5 , −3 . 1 ] ] ) , np . array ( [ 1 , 2 . 3 ] ) )

" " "
a s s e r t x . shape [ 0 ] == y . shape [ 0 ] , " D i f f e r e n t number o f rows "
i f i n t e r c e p t :

x = np . hstack ( ( np . ones ( ( x . shape [ 0 ] , 1) ) , x ) )
beta = np . l i n a l g . inv ( x .T @ x ) @ x .T @ y

Page 8



Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

re turn beta

he lp ( l i n r e g _ o l s )

8 Save and Load Results
After running linear regressions, we might want to save the results. We can use np.save
for that. It saves the results in a file for later use. The function np.save saves in a binary
file, which is faster for loading compared to .csv files (but it is not human-readable).
beta = l i n r e g _ o l s (np . random . random ((1000 , 3) ) ,

np . random . random ((1000 , 1) ) )
p r i n t ( beta )

he lp (np . save )
np . save ( ’ r e g r e s s i on_es t imat e s ’ , beta , a l l ow_pick l e=False ) # npy extens i on

If you are only using the data only on your computer (not sharing), then you can set
allow_pickle=True to speed things up.

To load the data, use np.load:
# load the data
de l beta
p r i n t ( beta ) # not de f ined
beta = np . load ( ’ r e g r e s s i on_es t imat e s . npy ’ , a l l ow_pick l e=False )
p r i n t ( beta )

We can save the results in a .csv file, which is easier to share and inspect. To do so,
we use np.savetxt:
np . save txt ( ’ r e g r e s s i on_es t imat e s . csv ’ , beta , d e l i m i t e r=’ , ’ )
# load from . csv
de l beta
p r i n t ( beta )
beta = np . l oadtx t ( ’ r e g r e s s i on_es t imat e s . csv ’ , d e l i m i t e r=’ , ’ )
p r i n t ( beta )

We can also use np.loadtxt to load data created outside Python.

Page 9


	Installing and Importing
	Basics
	Data Types
	Operations
	Mutability and Copying Arrays
	Additional Functionality
	Implementing the OLS Estimator for Linear Regressions
	Save and Load Results

