
Econ 672 & 872 - Empirical Methods in Financial Econometrics Guilherme Salomé

Python: Core Built-in Data Types

The purpose of this lecture is to cover the main built-in data types of the Python
language. These data types are important since they constitute basic building blocks for
several features of the language.

The core data types that are built-in Python are:

• Integers (int) and floats (float): store integers or real numbers;

• Strings (string): store characters and strings;

• Booleans (bool): store the values True or False and is used to test conditions;

• Sequences (list, tuple): list of elements where order matters;

• Dictionaries (dict): maps keys to values;

These data types combined with functions can be used to solve a huge number of prob-
lems. A full list of the built-in types are available on the built-in types documentation
page. Python also has many built-in functions which we will cover as needed. For a
complete list of the built-in functions, check the built-in functions documentation page.

1 Numbers
Numbers are separated into three different types: int, float and complex. Integers can
be as big as required, as long as you have free memory available.

Variables in python are not strongly typed. This means the type of the variable is
inferred at the time of declaration from its context. Thus, when creating numerical data,
the type of variable will be inferred from its definition.

i n t e g e r
x = 3005
big i n t e g e r
y = 1000
z = 10∗∗30000

We can print these numbers on the screen by using the function print.
pr in t (x)
can pr in t mu l t ip l e v a r i a b l e s
p r i n t (x , y , z)

We can check the type of a variable with the built-in function type.
pr in t (x , type (x))
p r i n t (y , type (y))

Page 1

https://docs.python.org/3.6/library/stdtypes.html
https://docs.python.org/3.6/library/stdtypes.html
https://docs.python.org/3.6/library/functions.html
https://docs.python.org/3.6/library/functions.html#print
https://docs.python.org/3.6/library/functions.html?#type

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

We can check the size of these integers (in bytes) with a helper function from the sys
module, named getsizeof. We use functions from a module by importing the entire
module with import. After importing the module, we use the dot notation to access
functions from that module. For example, to use getsizeof from the module sys, we
call sys.getsizeof.
Import the module named sys
import sys
Use the g e t s i z e o f f unc t i on from sys to p r i n t s i z e o f v a r i a b l e s :
p r i n t (sys . g e t s i z e o f (x) , sys . g e t s i z e o f (y) , sys . g e t s i z e o f (z))

The number of bytes assigned to the variable changes as the integer increases.
To create a float:

Float ing po int numbers : f l o a t s
a = 3.1415
b = 2.718281828

Integers and floats support the usual mathematical operations:
x = 11
y = 2
Addition , subt rac t ion , m u l t i p l i c a t i o n and d i v i s i o n
p r in t (x + y , x − y , x∗y , x/y)
In t eg e r d i v i s i o n
p r in t (x//y)
Remainder o f i n t e g e r d i v i s i o n
p r in t (x%y)

We can also use the buil-in functions abs and pow to obtain absolute value and perform
an exponentiation.
Absolute va lue
p r i n t (abs(−x−y))
Exponent iat ion
p r in t (pow(x , 2))
p r i n t (x∗∗2) # equ iva l en t to pow

We can convert between integers and floats by calling the built-in functions int and
float:
z = 3 .2
p r i n t (i n t (z) , type (i n t (z)))
h = 22
pr in t (f l o a t (h) , type (f l o a t (h)))

These functions are useful to convert strings into numbers.

2 Strings
There are several ways of creating strings:
Create s t r i n g s with s i n g l e quotes ’
f i rst_name = ’ John ’
or double quotes "
last_name = "Doe "
p r i n t (f irst_name , type (f irst_name))
A s t r i n g can a l s o have quotat ion marks

Page 2

https://docs.python.org/3.6/library/sys.html?module-sys#module-sys
https://docs.python.org/3.6/library/sys.html?highlight=sys#sys.getsizeof
https://docs.python.org/3.6/library/functions.html?abs#abs
https://docs.python.org/3.6/library/functions.html?abs#pow
https://docs.python.org/3.6/library/functions.html?#int
https://docs.python.org/3.6/library/functions.html?#float

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

more_str ings = ’ This i s a s t r i n g with " quotat ion marks " ’
p r i n t (more_str ings)
To c r e a t e s t r i n g s with mul t ip l e l i n e s use t r i p l e quotes ’ ’ ’
or t r i p l e double quotes " " "
mu l t i p l e_ l i n e s = ’ ’ ’ This i s a s t r i n g
that spans
mu l t ip l e l i n e s . They can a l s o be c rea ted with
t r i p l e quotat ion marks " " " " " " ’ ’ ’
p r i n t (mu l t i p l e_ l i n e s)

Strings are a collection of characters. Think of a vector, where each element is a letter.
We can access letters in a string using the [] notation. For example, the first letter of a
string has the index 0, so we can access it using the syntax [0]:
name = " John "
p r i n t (name [0])
p r i n t (name [1] , name [2])
Last l e t t e r
p r i n t (name [3])
Last l e t t e r o f a s t r i n g can be recovered with the index −1
p r in t (name [−1])

We can use the built-in function len to get number of letters in a string.
pr in t (l en (name))
Since index s t a r t s at 0 , the l a s t l e t t e r i s at p o s i t i o n l en (name)−1
p r in t (name [l en (name) − 1])
You get an e r r o r i f you use i n v a l i d i n d i c e s
p r i n t (name [l en (name)])

Strings are immutable:
pr in t (f irst_name [0]) # f i r s t l e t t e r o f s t r i n g
f irst_name [0] = ’A ’ # e r r o r

We can concatenate strings with the + operator.
pr in t (f irst_name + last_name)
p r in t (f irst_name + ’ ’ + last_name)

Whatever is being concatenated has to have the type str, otherwise it needs to be
converted to a string by using the built-in function str:
x = 1
pr in t (’ Student ’ + x + ’ : ’ + first_name) # e r r o r s i n c e x i s not a s t r i n g
convert to s t r i n g with s t r
p r i n t (’ Student ’ + s t r (x) + ’ : ’ + first_name) # e r r o r s i n c e x i s not a

s t r i n g

Everything in Python is an object. Objects hold values, like the value of the string,
but can also hold other information, like properties and methods. Methods are functions
which relate to the object itself. For example, a method might use the objects value to
create a new object. In the case of strings, there is a method that takes the string in the
variable and returns a new string with all letters capitalized:
C a p i t a l i z e s t r i n g
p r in t (f irst_name)
p r in t (f irst_name . c a p i t a l i z e ())
Al l lower case
p r i n t (upper_case . lower ())

Page 3

https://docs.python.org/3.6/library/functions.html?#len
https://docs.python.org/3.6/library/functions.html?#func-str

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

String methods return another string, which can be stored in a variable:
upper_case = first_name . upper ()
p r i n t (upper_case)

Remember that strings are immutable, so string methods all return new strings when
used. We will use other methods after we talk about sequences and booleans. A complete
list of the string methods is available on the string methods documentation page.

3 Booleans
There are two boolean values: True and False. The booleans are a subclass of integers,
and, in some contexts, the integers 1 and 0 represent the booleans True and False.

We can obtain booleans via comparisons. There are 8 types of comparisons in Python:
pr in t (1 < 1)
p r in t (1 <= 1)
p r in t (1 > 1)
p r in t (1 >= 1)
p r in t (1 == 1)
p r in t (1 != 1)
p r i n t (1 i s 1) # compares i f two ob j e c t are the same
pr in t (1 i s not 1)

Booleans support the operations: and, or and not.
pr in t ((1 > 0) and (2 > 1))
p r i n t ((1 > 2) or (1 < 2))
p r i n t ((1 > 2) or (0 > 1))
p r i n t (not True)

The built-in function bool can convert any value to a boolean.
pr in t (bool (0) , bool (1))
p r i n t (bool (’ Guilherme ’))
p r i n t (bool ([]))

When we use the function bool Python evaluates whether the input of the function is
associated with False or True. The most common objects that will lead to a False value
are:

• Constants that are False by definition: False and None

• Numbers that are zero: 0, 0.0, 0j

• Empty sequences: ”, (), [], {}

Other objects that are non-empty will lead to a value of True.

4 Sequences
A list can hold any number of elements and types of objects:
l i st_of_numbers = [1 , 2 , 3 , 2 . 3 , 3 . 1 , −1, 0 , −5]
p r i n t (l ist_of_numbers)
l i s t _ o f _ s t r i n g s = [’ Guilherme ’ , ’ Salome ’ , ’HFFE ’ , ’ Lecture 13 ’]
mixed_l i s t = [−1 , False , ’ He l l o ’ , 3 . 2]

Page 4

https://docs.python.org/3.6/library/stdtypes.html#string-methods
https://docs.python.org/3.6/library/functions.html?#bool
https://docs.python.org/3.6/library/stdtypes.html#list

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

Just like strings, elements of the list can be accessed by index using the [] notation.
The index of a list starts at 0.
pr in t (l ist_of_numbers [0])
p r i n t (l ist_of_numbers [1])

The built-in function len gives the length of a list:
pr in t (l en (l ist_of_numbers))
p r i n t (l en ([]))

Because indices start at 0 and not at 1, the last index of a list is given by the length
of such list minus 1. The last element of a list can also be accessed via the index -1
(equivalent of Matlab’s end):
pr in t (mixed_l i s t [3])
p r i n t (l en (mixed_l i s t))
p r i n t (mixed_l i s t [l en (mixed_l i s t)]) # index out o f range
p r in t (mixed_l i s t [l en (mixed_l i s t) −1])
p r i n t (mixed_l i s t [−1])

We can recover several elements of a list, also known as slicing, using the [] notation.
numbers = [−1 , 2 , 5 , 7 , 9 , 10 , 12]
recove r f i r s t element
numbers [0]
recove r f i r s t three numbers
numbers [0 : 3]
equ iva l en t to
numbers [: 3]
recove r from the th i rd number to the f i f t h
numbers [2 : 5]
recove r from the 2nd number to the l a s t
numbers [1 : l en (numbers)]
numbers [1 :]
recove r the l a s t number
numbers [−1]

We can also slice every other number using the notation [start:stop:step]:
recove r every other number
numbers [0 : l en (numbers) : 2] # s t a r t : stop : s tep
numbers [0 : : 2] # omiss ion o f stop means stop = len (

numbers)
recove r every 3 rd number
numbers [0 : : 3]

Elements of a list can be modified:
l i st_of_numbers [0] = 1000
pr in t (l ist_of_numbers)
l ist_of_numbers [−1] = ’ oops ’
p r i n t (l ist_of_numbers)

A list can be extended:
pr in t (l ist_of_numbers)
l ist_of_numbers . append (100) # adds to the end o f l i s t
p r i n t (l ist_of_numbers)
l ist_of_numbers . i n s e r t (0 , 100) # i n s e r t s at beg inning o f l i s t
p r i n t (l ist_of_numbers)

Page 5

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

l i st_of_numbers . i n s e r t (1 , 100) # i n s e r t s at p o s i t i o n 1 , s h i f t s eve ryth in
to the r i g h t

It is important to note that adding elements to the beginning of a list or at a random
location inside the list is slow. Appending at the end of the list is much faster.

A list can be shrunk.
pr in t (l ist_of_numbers)
l ist_of_numbers . pop () # removes l a s t item
pr in t (l ist_of_numbers)
l ist_of_numbers . pop (0) # removes f i r s t item (t h i s i s s low)
p r in t (l ist_of_numbers)
de l l ist_of_numbers [1] # removes element at index 1
p r in t (l ist_of_numbers)

A tuple is also a sequence, but it is a sequence that cannot be modified after it is
created.
tuple_of_numbers = (1 , 2 , 3 , 4 , 5)
p r i n t (tuple_of_numbers)
p r i n t (tuple_of_numbers [0] , tuple_of_numbers [−1] , l en (tuple_of_numbers))
tuple_of_numbers [0] = 100 # r a i s e s e r r o r
tuple_of_numbers . append (100) # r a i s e s e r r o r

Tuples are more efficient than lists since they occupy less bytes. Tuples are used when
you want to fix a sequence of values that should not be changed.

A range is a special type of sequence. It constructs a sequence of numbers and is
often used for looping a specific number of times in a loop.
pr in t (l i s t (range (0 , 10)))
p r i n t (l i s t (range (10)))
p r i n t (l i s t (range (0 , 10 , 2)))

It is important to know that all functions that return a list of numbers in Python exclude
the last number from the list. For example range(5) returns a list with the numbers
0,1,2,3,4. This is because lists start in the index 0, so the last index of a list with
5 elements is the index 4. This contrasts with lists in Matlab which start at index 1,
but is a small change that is more natural to programming and is the default in most
programming languages.

5 Dictionaries
A mapping is an object that associates names (keys) to values (any object). The standard
implementation of a mapping in Python is a dictionary: dict. Dictionaries are very
efficient for searching keys and extracting the value associated with that key.

A dictionary can be created using curly brackets and passing a list of key:value
pairs:
grades = { ’A ’ : 10 , ’B ’ : 8 , ’C ’ : 7 , ’D ’ : 8 . 5 , ’E ’ : 9 .8}
p r i n t (type (grades))
p r i n t (l en (grades))
grades [’A ’] # re tu rn s va lue f o r grade o f A
pr in t (grades)

Dictionaries can be modified, its elements can be removed, new elements can be added,
and existing elements can be updated.

Page 6

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#range
https://docs.python.org/3.6/library/stdtypes.html#dict

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

Change value o f one key
grades [’C ’] = 7 .5
p r i n t (grades)
Change value o f mu l t ip l e keys
grades . update ({ ’A ’ : 0 , ’B ’ : 0}) # A and B were cheat ing
p r in t (grades)
Delete a value
de l grades [’B ’] # remove grade f o r B
pr in t (grades)
Extend d i c t i o n a r y
grades [’F ’] = 10 # adds a new pa i r to the d i c t i o n a r y
p r in t (grades)

We can recover (as a list) all of the keys of a dictionary, all of its values, and all of
the key:value pairs:
l i s t (grades . keys ()) # a l i s t o f a l l d i c t keys
l i s t (grades . va lue s ()) # a l i s t o f a l l d i c t va lue s
l i s t (grades . i tems ()) # a l i s t o f the key : va lue p a i r s

Other methods are described here.

Page 7

https://docs.python.org/3.6/library/stdtypes.html#dict

	Numbers
	Strings
	Booleans
	Sequences
	Dictionaries

