
Econ 672 & 872 - Empirical Methods in Financial Econometrics Guilherme Salomé

Python: Control Flow and I/O

This lecture discusses the basics of control flow in Python, i.e. conditionals, loops and
functions. It also discusses how to read and output files.

1 Control Flow
Control flow refers to the tools we have available to control the execution of our script:
conditionals (if, else, elif), loops (while, for) and functions.

1.1 Conditionals
The syntax for if statements is:
i f c ond i t i on :

i f cond i t i on eva lua t e s to True
run code in here

e l s e :
i f cond i t i on i s Fa l se
run code in here in s t ead

Notice the use of a colon after the condition and after the else keyword. Also observe
that we have indented the expressions after the if and else keywords. Contrary to
other languages that use brackets or the end keyword to delimit a scope, Python uses
indentation. The indentation indicates what is inside the if block and what is not.
Finally, notice that semicolons are not required by Python, you can still use them but
they are not required, instead Python uses linebreaks to find the end of the command.

The condition that comes after the if keyword is an expression that evaluates to a
boolean. If that is true, then the indented code after if is executed. If the expression
evaluates to false, then the indented code after else is executed. For example:
var iance = −2
i f var i ance < 0 :

p r i n t (’ Your var iance i s negat ive , what are you doing ? ’)
e l s e :

p r i n t (’ Variance i s p o s i t i v e , phew ! ’)

We can also have an if without an else:
say_hi = True
i f say_hi :

p r i n t (" Hi ! ")

We can test multiple conditions with elif:

Page 1

https://docs.python.org/3.6/tutorial/controlflow.html#if-statements

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

variance_type = ’RV’
i f variance_type == ’RV’

p r in t (’ Computing r e a l i z e d var iance ’)
e l i f var iance_type == ’BV’ :

p r i n t (’ Computing bipower var iance ’)
e l s e :

p r i n t (’ Computing truncated var iance ’)

If the first two conditions are not executed then the last condition (the default) is.
It is possible to use several elif to test more conditions.

i f x < −1:
doSomething

e l i f x >= −1 and x <= 1 :
doSomethingElse

e l i f x > 2 and x != 3 :
doYetAnotherThing

e l s e :
x == 3
doOtherThing

1.2 Loops
In Python, we can write loops with while and for.

A while loop evaluates an expression, and, if it is True, a block of is executed and the
loop repeats. The syntax for a while is:
whi le cond i t i on :

i f the cond i t i on i s t rue
do something here

The code inside the while loop will be executed as long as the condition evaluates to
True.

For example:
t o t a l = 10
i = 0
pr in t (" Beginning whi l e loop : ")
whi l e i < t o t a l :

i += 1 # equ iva l en t to i = i + 1
pr in t (i)

A for loop can be written as:
f o r i in sequence :

do something here

A for loop iterates the variable i over the values in sequence. For each value i takes,
the code block is executed.

For example:
s tudents = [’A ’ , ’B ’ , ’C ’ , ’D ’ , ’E ’]
f o r i in [0 , 1 , 2 , 3 , 4] :

p r i n t (s tudents [i])

Page 2

https://docs.python.org/3.6/tutorial/introduction.html#first-steps-towards-programming
https://docs.python.org/3.6/tutorial/controlflow.html#for-statements

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

Remember that we have two built-in functions that can help here. The function range
can create a list of numbers like the one in the for loop above. And the function len
returns the length of an object. So:
s tudents = [’A ’ , ’B ’ , ’C ’ , ’D ’ , ’E ’]
f o r i in range (l en (s tudents)) :

p r i n t (s tudents [i])

For loops in Python really behave like a "for-each" loop. We can iterate over the
elements of students directly, without the need to use an index: for each i in students
do something.
s tudents = [’A ’ , ’B ’ , ’C ’ , ’D ’ , ’E ’]
f o r name in s tudents :

p r i n t (name)

The container with the students takes care of giving out each of the elements without
explicitly tracking the index of elements. If the container (in this case a list) is ordered,
then the elements will be processed in the same order.

If you really need to access the indices then you can use the built-in function enumerate
to iterate over the indices and the student names at the same time. Let’s first look at
what enumerate does:
x = [100 , 200 , 300]
p r i n t (enumerate (x)) # does not r e v e a l much
Convert the enumerate ob j e c t to a l i s t , so that we can see what ’ s i n s i d e
p r i n t (l i s t (enumerate (x)))

Each element in the enumerated list is a tuple! The first element of the tuple is the index
of the second element of the tuple on the original list. For example, the first tuple is (0,
100), where 100 is the first value in x, and 0 is the index of 100 in x.

Tuples can be unpacked into many variables at the same time:
y = (0 , 100)
index , va lue = y
index , va lue = (0 , 100)

This type of assignment is called "tuple unpacking" (or list unpacking), and assigns the
value 0 to the name index, and the value 100 to the name value.

We can combine enumerate with tuple unpacking in a for loop!
f o r i , name in enumerate (s tudents) :

p r i n t (’ s tudents [’ + s t r (i) + ’]= ’ + name)

The iterator enumerate(students) returns more than one value (it returns two values
at each iteration). In general, iterators can return a tuple with any number of values,
and these values are unpacked in the for-loop. In this case, the enumerate(students)
returns a tuple with two elements, the first is an integer representing the index (starting
at 0), and the second is one of the elements of the students list. These two values are
unpacked, the first one is assigned to the variable i, and the second is assigned to the
variable name.

We can also use dictionaries in a for-loop.
studentsGrades = { ’A ’ : 10 , ’B ’ : 9 , ’C ’ : 9 . 5 , ’D ’ : 8}
f o r i in studentsGrades :

p r i n t (i)

Page 3

https://docs.python.org/3.6/library/functions.html#enumerate

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

This for loop will iterate over the keys of the dictionary, so that at each iteration i receives
one of the keys, such as ’A’ or ’B’.

We can also iterate over keys and values at the same time using unpacking. To do so,
we use the items method of dictionaries. The method returns a list of tuples, where the
first element of the tuple is the key, and the second element of the tuple is the value:
d i r (grades)
he lp (grades . i tems)
f o r name , grade in studentsGrades . i tems () :

p r i n t (f " {name} ’ s grade was { grade } ")

In some other languages a for-loop is written with the following syntax:
f o r (i n t i = a ; i < n ; i += s) {
do s t u f f here
}

This type of loop can be written in Python using the function range:
f o r i in range (a , n , s) :

do th ing s here

The function range(a, n, s) will create a list of numbers starting at the value a, stops
before the value n, and has a step size s.

1.3 Functions
Functions can be defined with the def keyword and there is no need to specify the type of
the return (remember values in Python are inferred when they are assigned). The body
of the function starts in the next line and must be indented.
de f f i b o n a c c i (n) :

" " "
Writes a l i s t o f the f i r s t n numbers a f t e r the two i n i t i a l va lue s o f
Fibonacc i s e r i e s .

Input :
n (i n t) : number o f e lements to obta in from the Fibonacc i s e r i e s

Output :
s e r i e s (l i s t) : l i s t o f e lements from the Fibonacc i s e r i e s

" " "
prev ious , cur r ent = 1 , 1
s e r i e s = [prev ious , cur rent]
f o r i in range (n) :

current , p rev ious = current + previous , cur rent
s e r i e s . append (cur rent)

re turn s e r i e s

After the def keyword comes the name of the function, and then parentheses (). Inside
the parentheses are the name of the variables, if any, and then comes a colon.

The body of a functin starts with its documentation string (docstring). The triple
quotes define a multi-line comment and it is a good practice to add the definition of the
function, or at least what it is supposed to do and output.

We can execute this code cell so that the function fibonacci is available for use. We
can now call this function:

Page 4

https://docs.python.org/3.6/library/stdtypes.html?highlight=dict.items#dict.items

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

f i b o n a c c i (10)

Notice that calling the function help on or just defined function will output its doc-
umentation:
help (f i b o n a c c i)

The body of the function defines a local scope. Any variables that are assigned in the
body of the function first refer to the local scope, and then to the global scope.
message = " He l lo World "
de f sayHe l lo () :

message = " He l lo World ! ! ! ! "
p r i n t (message)

p r i n t (message)
sayHe l lo ())
p r i n t (message) # p r i n t s He l lo World , not He l lo World ! ! ! !

The variable message is first defined outside the function, it is a global variable. Inside
the sayHello function we define a variable with the same name, it is a local variable and
does not overwrite the global variable with the same name. This becomes clear when we
print the value of message outside of the function.

Notice that the sayHello function has no return keyword and does not return any
value. A function that has no return keyword implicitly returns a value of None. That
is, Python impicitly appends a return None to the function that has no return value.
The body of the function ends when the indentation ends, so there is no need to use
brackets or an end keyword. When the value of None is the only one to be returned by
a function, the REPL suppress printing it on the screen.
sayHe l lo () # does not p r i n t the re turn value
p r i n t (sayHe l lo ()) # p r i n t s the re turn value , which i s None
a = sayHe l lo ()
a == None # True

1.3.1 Functions are First-Class Objects

Functions are first-class objects, which means they are treated the same as any other
object in the language. Remember, everything in Python is an object. Functions can
be created, destroyed (this is done automatically by Python), passed to other functions,
assigned to a variable, returned from another function.
type (sayHe l lo)
p r i n t (sayHe l lo) # p r i n t s in fo , address o f f unc t i on in

memory
a = sayHe l lo
p r i n t (a) # same address

When a function is defined and loaded by the Python interpreter it is assigned some
space in memory. When we ran the code that defined sayHello, the function is created
and assigned some space in memoy. The name sayHello then points to that space in
memory. When we assign it to the variable a, then a starts pointing at the same space
in memory.

Page 5

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

de l sayHe l lo
p r i n t (sayHe l lo) # name not de f ined
p r in t (a) # the func t i on l i v e s !
a ()

We can pass functions as inputs to other functions, and even return a function from
another function:
de f g r ee t ingFacto ry (name) :

de f g r e e t () :
p r i n t (f "Welcome , {name } ! ")

re turn g r e e t

The function defined above takes a name as an argument, and creates a function that
prints a message using the name. It then returns the newly defined function. This function
that was returned remembers the value of name that was used in its construction, this is
called a ’closure’. A closure is a function that remembers the values of the variables in
the enclosing scope (the scope of greetingFactory).
name = ’ Guilherme ’
g r ee tMyse l f = gree t ingFacto ry (name)
gree tMyse l f ()
g r ee t ingFacto ry (’Doe ’) ()

1.3.2 Default Values

Functions can take arguments with default values! (This is not the case in Matlab, where
default values is not straightforward)
import math

de f est imate_var iance (returns , type_=’RV’) :
i f type_ == ’RV’ :

rv = 0
f o r r in r e tu rn s :

rv += r ∗∗2
return rv

e l i f type_ == ’BV’ :
bv = 0
f o r i in range (2 , l en (r e tu rn s)) :

bv += abs (r e tu rn s [i −1]∗ r e tu rn s [i])
r e turn (math . p i /2) ∗bv

This function can be called in several different ways:
r e tu rn s = [0 . 2 , 0 . 3 , −.01 , −0.5]

est imate_var iance (r e tu rn s)
est imate_var iance (returns , ’RV’)
est imate_var iance (returns , ’BV’)

You can even specify which variable you are assigning the value to by using name and
value pairs:
est imate_var iance (returns , type_=’BV’)
est imate_var iance (r e tu rn s=returns , type_=’BV’)
est imate_var iance (type_=’BV’ , r e tu rn s=re tu rn s)

Page 6

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

You can use other variables to hold the default values for inputs in a function. How-
ever, the default values are captured (evaluated) when the function is first defined. That
is, even if the value of the variable changes, the default value will not change:
i = 10
de f f (arg=i) :

p r i n t (arg)
i = 20
f () # p r i n t s 10

2 Input and Output
We now turn to loading and saving files with Python. To begin, let’s create a new file
and save some data in it. Open a file for writing with open:
f = open (’ f i l e . txt ’ , ’w ’)
f i s an ob j e c t r e p r e s e n t i n g the f i l e
f has a method f o r wr i t i ng to the f i l e : f . wr i t e
f . wr i t e takes a s t r i n g and outputs i t to the f i l e
f . wr i t e (’ column1 , column2 , column3\n ’)
\n i s a s p e c i a l cha rac t e r that r e p r e s e n t s a new l i n e
f . wr i t e (’ 1 . 2 3 , 2 . 3 4 , 0 . 3 , 4 . 5 ’)
Close the f i l e so that i t i s saved
f . c l o s e ()

The file was created in the working directory Python is using. If you are in jupyter note-
book, the working directory will be the folder where you launched jupyter notebook from
using the terminal. You can use the built-in package os to find the working directory:
import os
os . getcwd ()

You can change the path to elsewhere with os.chdir. We can inspect the file outside
Python by opening it with a text editor.

Let’s open the file for reading now:
f = open (’ f i l e . txt ’ , ’ r ’) # r f o r read ing only
We can go through the f i l e in d i f f e r e n t ways
he lp (f . read)
f . read : Reads u n t i l EOF (end o f f i l e) and re tu rn s a s t r i n g with

everyth ing
data = f . read ()
p r i n t (data)
Print s t r i n g without i n t e r p r e t i n g the s p e c i a l cha rac t e r \n as a new l i n e
p r i n t (repr (data))

Python uses a cursor to go through the file. When we called f.read, this cursor moved
through all characters of the file and stopped at the end of the file. Thus, if we call f.read
again, Python will start reading the file from where the cursor is at. Since the cursor is
already at the end of the file we will get an empty string, since there is nothing to read:
pr in t (f . read ())
p r i n t (repr (f . read ()))
To re−read the f i l e , we can e i t h e r c l o s e i t and open i t again
f . c l o s e ()
p r i n t (f)

Page 7

Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

f . read () # f i l e i s c l o s e d
f = open (’ f i l e . txt ’ , ’ r ’)
Now, the cur so r i s back at the beg inning o f the f i l e
p r i n t (f . read ())
The cur so r i s back at the end o f the f i l e
Move the cur so r back to the beg inning with f . seek
he lp (f . seek)
f . seek (0)
p r i n t (f . read ())
f . seek (0)
We can read l i n e by l i n e with f . r e a d l i n e
p r i n t (f . r e a d l i n e ())
reads u n t i l i t f i n d s \n , and outputs the r e s u l t
Read the next l i n e
p r i n t (f . r e a d l i n e ())
Read the next l i n e , which does not e x i s t
p r i n t (f . r e a d l i n e ()) # empty s t r i n g

The file object is also an iterator. It can be used in a for-loop in a way similar to a list
of numbers. But, in this case, we have a list of lines:
f . seek (0)
f o r l i n e in f :

p r i n t (l i n e)
After we are done with the f i l e , we can c l o s e i t
f . c l o s e ()

Notice we had to open and close the file. We can use something called a context manager
to facilitate the job of opening and then automatically closing the file for us. To do so,
we use the with keyword:
with open (’ f i l e . txt ’ , ’ r ’) as f :

I n s i d e t h i s block , f r e p r e s e n t s the f i l e .
We can now read the f i l e however we p r e f e r .
data = f . read ()

When we e x i t the " with " block , i t w i l l take care o f c l o s i n g
the f i l e f o r us . The f i l e w i l l be c l o s e d even i f the re i s an
e r r o r which i n t e r r u p t s the execut ion o f the code .
p r i n t (data)

Page 8

	Control Flow
	Conditionals
	Loops
	Functions
	Functions are First-Class Objects
	Default Values

	Input and Output

