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Python: Pandas

The pandas package provides very efficient data structures and tools for analyzing
data. There are two basic data types created by pandas: Series and DataFrame. The
Series class is built to store a column of data. That is, one characteristic and multiple
observations. The DataFrame class is built to store several columns of related data. We
will learn how to work with both classes. Pandas is built-on top of NumPy, and there
are several other packages that rely on Pandas for data management.

Another interesting package that is built on top of Pandas is the Statsmodels package,
which provides functions for statistical estimation (time series, method of moments, linear
regression). We won’t cover this package during this course, but you should read its
documentation if econometrics interests you.

1 Install
Pandas is bundled with Anaconda and should already be installed on your system. In
order to use it, you will need to import it:
import pandas as pd

Notice that we use the alias pd for the Pandas package.

2 Series
We start by creating a Pandas Series. The Series object is like a single column of a
spreadsheet. Each row of the column is one observation of a single characteristic. Below,
we will create a Series to hold the last return of a Stock, and each row will represent the
company name:
import numpy as np
import pandas as pd

data = np . random . random (5)
p r i n t ( data )
s = pd . S e r i e s ( data=data , name=’ r e tu rn s ’ )
p r i n t ( s )

You can think of each row as a return observation for a stock. Or each row as
representing a different company, and the characteristic is the return for a month. The
Series object can only hold data of a single type. The values of the column are stored in
a numpy array:
pr in t ( s . va lues , type ( s . va lue s ) )

Page 1

https://pandas.pydata.org
https://pandas.pydata.org/pandas-docs/stable/reference/series.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
https://www.statsmodels.org/stable/index.html


Econ 672 & 872 - Empirical Methods in Financial Econometrics Fall 2019

However, s itself is another class with more features. And only one of its attributes
is the numpy array.
pr in t ( type ( s ) , d i r ( s ) )

Mathematical operations work as they would with a Numpy array:
s + 1
s ∗ 100
np . exp ( s )
np . l og ( s )

All mathematical operations are applied element-wise, since they are fundamentally op-
erations done on a numpy array. Notice that these operations use the underlying numpy
array to do the computations, but return still return a pandas Series (or DataFrame).

The index of the series (the column of numbers) serves as a way to find the data we
want. While Pandas supports indexing with [], it is better to use the method loc to get
the elements of a Series. To use loc, we need to specify the label of the row we want and
pass it inside []:
s . l o c [ 0 ]
s . l o c [ 1 ]
s . l o c [ −1] # −1 i s not a l a b e l !
s . l o c [ 4 ]
s . l o c [ 0 : 4 ] # pandas always i n c l u d e s the l a s t va lue

The use of square brackets for indexing changes depending on the context. If we are
using a Series, then [] will index rows, but for a DataFrame (several rows and several
columns) [] indexes columns. The method loc works as expected for both the Series
and DataFrame objects.

But, we can change the way the data is indexed. For example, we can change from
numbers to text:
pr in t ( s . index )
s . index = [ ’SPY ’ , ’AAPL’ , ’TSLA ’ , ’AMZN’ , ’COST’ ]
p r i n t ( s )
p r i n t ( s . index )

Notice that now the type of the index is object, instead of float_. We can access
the rows using the labels with loc:
s . l o c [ ’SPY ’ ]
s . l o c [ ’AAPL’ ]
s . l o c [ 0 ] # 0 i s not a l a b e l anymore !

But they are more flexible. For example, we can acess multiple rows:
s . l o c [ [ ’SPY ’ , ’AAPL’ ] ]
s . l o c [ [ ’SPY ’ , ’AAPL’ , ’COST’ ] ]

We can also use the slicing notation:
s . l o c [ ’SPY ’ : ’COST’ ]
s . l o c [ ’AAPL’ : ’TSLA ’ ]

We can use the in operator to test against the series index:
pr in t ( ’SPY ’ in s )
p r i n t ( ’GOOG’ in s )
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3 DataFrame
A DataFrame is a collection of many Series. It is like a spreadsheet, where each column
represents one variable and each row an observation.

data = np . random . random ( ( 5 , 3) )
df = pd . DataFrame ( data=data )
# DataFrame does not take a name argument .
p r i n t ( type ( df ) )
p r i n t ( df )

Notice that rows and columns were labeled with numbers since we did not specify the
labels we wanted to use.

The rows are indexed by numbers:
pr in t ( df . index )
df . index = [ ’SPY ’ , ’AAPL’ , ’TSLA ’ , ’AMZN’ , ’COST’ ]
p r i n t ( df )

The columns are also indexed by numbers, but we can also change the indexing to
represent the characteristics:
pr in t ( df . columns )
df . columns = [ ’ r e turn ’ , ’ l a s t d iv idend ’ , ’ l a s t p r i c e ’ ]
p r i n t ( df )

To index the elements of a DataFrame we can still use loc. Remember that loc
takes labels, but now we need to specify two sets of labels: one for rows and another for
columns.
df . l o c [ : , ’ r e turn ’ ]
d f . l o c [ ’SPY ’ : , ’ r e turn ’ ]
d f . l o c [ : ’COST’ , ’ r e turn ’ ]
d f . l o c [ : , [ ’ l a s t d iv idend ’ , ’ r e turn ’ ] ]
d f . l o c [ : , [ ’ l a s t p r i c e ’ , ’ r e turn ’ ] ]
d f . l o c [ [ ’AAPL’ , ’AMZN’ ] , [ ’ l a s t p r i c e ’ , ’ r e turn ’ ] ]

Notice that the DataFrame columns are reordered depending on the order of the columns.
It is also possible to slice a DataFrame via integers, instead of just relying on labels.

To do so, we use the method iloc, but instead of specifying labels we specify indices:
pr in t ( df )
df . i l o c [ 0 , : ]
d f . i l o c [ : , 0 ]
d f . i l o c [ 0 : 2 , : ] # s l i c i n g with i n d i c e s works as be f o r e : exc ludes l a s t

i n t e g e r
df . i l o c [ 2 : , : 2 ]
d f . i l o c [ [ 0 , 2 , 4 ] , [ 0 , 2 ] ]

The method iloc is for selectin rows and columns by integer indexing.
Notice that for a DataFrame, we can also use [] for indexing columns:

df [ " r e turn " ]
df [ [ " r e turn " , " l a s t d iv idend " ] ]
d f [ : ]
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4 Reading Data
Pandas also implements several methods for reading data into a Series or a DataFrame.
Let’s use pd.read_csv to read the .csv file for a Stock.
import os
import pandas as pd

f i l ename = os . path . j o i n ( " / " , " Volumes " , "SD" , " Data " , " Stocks5Min " , "SPY.
csv " )

data = pd . read_csv ( f i l ename )
p r in t ( data )

Notice that the first row of the file was used as headers. To avoid that:
pd . read_csv ( f i l ename , header=None )

How do I know that I need to change the input header? By simply reading the
functions documentation:
help (pd . read_csv )

Notice that pd.read_csv is a function that allows for several different use cases. We will
see some of these cases, but you should read the documentation yourself to see what this
function is capable of.

We want to name the columns of our data. To do so:
pd . read_csv ( f i l ename , header=None , names=[ " Date " , "Time " , " Pr i ce " ] )

Now the data is being imported into a DataFrame and assigned useful column names.
Notice that the index of the data is a list of integers. We can select another index:

data = pd . read_csv ( f i l ename , header=None , names=[ " Date " , "Time " , " Pr i ce " ] )
data = data . set_index ( " Date " )

We can get a summary description of the data by calling the method describe:
data . d e s c r i b e ( )
# change number o f decimal p l a c e s d i sp layed
pd . set_opt ion ( ’ p r e c i s i o n ’ , 2) # only f o r pr in t ing , not f o r s t o r i n g
data . d e s c r i b e ( )

The index of the data is given by the dates in our data. We can get the values in the
index by calling:
data . index

Notice that the index is a list of integers.

5 Dates and Times
Pandas works well with datetime objects, which can be used to represent dates and times.
We can use the function pd.to_datetime to convert data to the datetime format:
dates_index = pd . to_datetime ( data . index , format="%Y%m%d" )
p r i n t ( dates_index )
data = data . set_index ( dates_index )
p r i n t ( data . index )
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For a full list of possible format codes, see this refence page on Format Codes.
What’s the usefulness of this? Well, Pandas has methods for slicing data by dates

(and also times), and we can also group data by dates (more on this later).
# S e l e c t a year o f data
data . l o c [ " 2007 " ]
data . l o c [ " 2007 " , : ]
# S e l e c t a month
data . l o c [ " 2007−12 " ]
# S e l e c t a day
data . l o c [ " 2007−12−03 " ]

We can also use the index to find the dates directly:
data . index . date
data . l o c [ data . index . date [ 0 ] ]
# There are many r e p e t i t i o n s , so get the va lue s that do not repeat
dates = np . unique ( data . index . date )
p r i n t ( dates )
data . l o c [ dates [ 0 ] ]
data . l o c [ dates [ 1 ] ]

And the dates can be used to slice the data on a range:
data . l o c [ dates [ 0 ] : dates [ 1 0 ] ]
data . l o c [ " 2007 " : " 2008 " ]

Let’s incorporate the times into the index.
dates = data . index . s t r f t i m e ( "%Y%m%d" )
t imes = data [ "Time " ] . astype ( s t r )
datet ime = pd . to_datetime ( dates + times , format="%Y%m%d%H%M" )
data = data . set_index ( datet ime )
data = data . drop ( columns=[ "Time " ] )
p r i n t ( data )

We can now slice by time:
data . l o c [ " 2007−01−03 09 : 35 : 00 " : " 2007−01−03 10 : 30 : 00 " ]

We can also use the datetime indices to create plots with the correct axis labels.
Before we move on to plots, notice that the pd.read_csv function can parse dates when
the data is being imported:
data = pd . read_csv (

f i l ename ,
header=None ,
names=[ " Date " , "Time " , " Pr i ce " ] ,
parse_dates =[ [0 , 1 ] ] , # combine columns 0 and 1 to parse
index_col=0 # use the f i r s t column as the index

)
p r i n t ( data )

Notice that Pandas couldn’t identify the date and time format automatically, so we
need to specify it ourselves:
data = pd . read_csv (

f i l ename ,
header=None ,
names=[ " Date " , "Time " , " Pr i ce " ] ,
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parse_dates =[ [0 , 1 ] ] , # combine columns 0 and 1 to parse
index_col =0, # use the f i r s t column as the index
date_parser=lambda x : pd . datet ime . s t rpt ime (x , "%Y%m%d %H%M" ) ,

)
p r i n t ( data )

6 Plotting
Pandas is also built on top of Matplotlib. The Series and DataFrame classes provide
methods to automatically plot what is stored in these objects.
import matp lo t l i b . pyplot as p l t

with p l t . s t y l e . context ( " ggp lo t " ) :
ax = data . p l o t (

kind=" l i n e " ,
f i g s i z e =(16 , 4) ,
t i t l e=" Evolut ion o f the Market Index " ,
l egend=False ,
g r i d=True ,
c o l o r=" black " ,

)
ax . s e t ( x l a b e l="Time " , y l a b e l=" Pr i ce ( in d o l l a r s ) " )

All of the options available in Matplotlib are also available in Pandas.
We can zoom in by indexing the data we want to plot:

from matp lo t l i b . dates import DateFormatter

with p l t . s t y l e . context ( " ggp lo t " ) :
ax = data . l o c [ " 2007 " ] . p l o t ( )
ax . xax i s . set_major_formatter ( DateFormatter ( "%b" ) )
ax . axh l ine ( y=data . l o c [ " 2007 " ] . mean ( ) . va lues , c o l o r=" black " , l i n e s t y l e="

−−" )
ax . s e t ( x l a b e l="Time " , y l a b e l=" Pr i ce ( in d o l l a r s ) " , t i t l e=" Market Index

in 2007 " )
ax . l egend ( [ "SPY" , " Average SPY" ] )

7 Panel Data and Merging
Let’s load data for another stock:
de f load_stock ( f o l d e r , t i c k e r ) :

r e turn pd . read_csv (
os . path . j o i n ( f o l d e r , f " { t i c k e r } . csv " ) ,
header=None ,
names=[ " Date " , "Time " , " Pr i ce " ] ,
parse_dates =[ [0 , 1 ] ] , # combine columns 0 and 1 to parse
index_col =0, # use the f i r s t column as the index
date_parser=lambda x : pd . datet ime . s t rpt ime (x , "%Y%m%d %H%M" ) ,

)

f o l d e r = os . path . j o i n ( " / " , " Volumes " , "SD" , " Data " , " Stocks5Min " )
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spy = load_stock ( f o l d e r , "SPY" )
csco = load_stock ( f o l d e r , "CSCO" )

p r i c e s = pd . merge (
l e f t=spy , r i g h t=csco , l e f t_ index=True , r ight_index=True , s u f f i x e s =("

_SPY" , "_CSCO" )
)

p r i c e s

The function pd.merge can be used for joining multiple data frames together. In this
case, we have two data frames that share indices containing the exact same values. We
used these indices to join the data. Given the values in one index (left_index), Pandas
looks for a unique matching value on the other index (right_index), and then joins the
values of both columns in a new row. For more information on merging, refer to the
Method, join and concatenate reference page.

Let’s create a matrix of returns:
r e tu rn s = np . l og ( p r i c e s ) . d i f f ( ax i s =0)
p r i n t ( r e tu rn s )

The np.log function comes from Numpy and applies the logarithm element by element
on the data frame. The data frame’s method diff takes differences row by row.

The returns we computed include overnight returns (except for the very first row).
Therefore, we need to drop those rows:
r e tu rn s . i l o c [ : : 7 8 , : ] = np . nan
pr in t ( r e tu rn s . i l o c [ : : 7 8 , : ] )
r e tu rn s = re tu rn s . dropna ( )
p r i n t ( r e tu rn s )
r e tu rn s . columns = [ "Return_SPY" , "Return_CSCO" ]
p r i n t ( r e tu rn s )

Another possibility to computing returns is by indexing the data day by day.

8 Group, Apply and Aggregate
Pandas can automatically split the data by the values in a column. For example, the
column containing the indices can be used to splits the data day by day.
dates = p r i c e s . index . date
grouped = p r i c e s . groupby ( dates )

The variable grouped now contains a list-like object. This list is a list of slices of the
original data, where each slice is a single date of data. Pandas can slice the data by
day because it looks for values of the index that match the values in the dates variable.
Each value in the dates variable is a specific day, which is matched to the values in
returns.index and allows Pandas to select the correct rows for that day.

We can go over the variable grouped directly via a for-loop. Each element of grouped
is a tuple containing two elements. First, is the value of dates that was matched to
returns.index. Second, is a DataFrame containing all of the rows for the matching
values (all of the data for a given day).
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f o r date , df in p r i c e s . groupby ( dates ) :
break

p r in t ( date , type ( date ) )
p r i n t ( df )

We can then use the DataFrame with that day’s data to compute the returns for that
day:
day_by_day = [ ]
f o r date , df in p r i c e s . groupby ( dates ) :

day_returns = np . l og ( df ) . d i f f ( ax i s =0)
day_by_day . append ( day_returns )

p r i n t (day_by_day [ 0 ] )
p r i n t (day_by_day [ −1])

We can combine all of the data frames stored in a list with the function pd.concat:
r e tu rn s = pd . concat (day_by_day)
r e tu rn s . columns = [ "Return_SPY" , "Return_CSCO" ]
r e tu rn s = re tu rn s . dropna ( )
p r i n t ( r e tu rn s )

Let’s use the same idea to compute the realized variances:
rv_day_by_day = [ ]
dates = [ ]
f o r date , df in r e tu rn s . groupby ( r e tu rn s . index . date ) :

rv_day_by_day . append ( ( df ∗∗ 2) . sum( ax i s =0) )
dates . append ( date )

p r i n t ( dates [ 0 ] )
p r i n t ( rv_day_by_day [ 0 ] )
rv = pd . DataFrame ( data=rv_day_by_day , index=dates )

Here we did not use pd.concat because the result of computing the realized variance
is a Series instead of a DataFrame. Concatenating many Series would lead to a long
Series with various repeated labels. We use the pd.DataFrame function to create a new
DataFrame from the data we just accumulated. Each Series in rv_day_by_day will be
transformed into a row, and we use the dates to create the index.

Notice that there is a pattern here:

• Break up a big data frame into smaller pieces;

• Use each piece to compute some measure of interest;

• Aggregate all results into a DataFrame.

This pattern is built into Pandas. The grouped variable has many methods, one of them
is apply. This method is used to apply a function to each slice of the data frame (i.e.,
each day), and also takes care of joining all results together.
r e tu rn s = p r i c e s . groupby ( p r i c e s . index . date ) . apply ( lambda df : np . l og ( df ) .

d i f f ( ax i s =0) )
p r i n t ( r e tu rn s )
r e tu rn s = re tu rn s . dropna ( )
r e tu rn s . columns = [ "Return_SPY" , "Return_CSCO" ]
p r i n t ( r e tu rn s )

We can use the same idea to compute the realized variance:
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rv = re tu rn s . groupby ( r e tu rn s . index . date ) . apply ( lambda df : ( df ∗∗2) . sum( ax i s
=0) )

p r i n t ( rv )
rv . columns = [ "RV_SPY" , "RV_CSCO" ]
p r i n t ( rv )

9 Resampling
So far we have worked with data sampled every 5-minutes or faster. We can use the high-
frequency data to compute returns at a lower frequency. To do so, we need to resample
our data. We need to split the data day by day, and, for each day, sum up the log-returns
to obtain the return for a given day.
da i ly_returns = re tu rn s . groupby ( r e tu rn s . index . date ) . apply ( lambda df : df . sum

( ax i s =0) )

When working with data index by time, we can leverage Pandas functions to re-
sample our data to different frequencies. Pandas has a built-in function for resampling
a DataFrame in various ways, as long as the index is a list of datetime objects. The
resampling functionality of Pandas works in a similar way to groupby:

• Split the data, but now we split the data into a new frequency. For example, if the
new frequency is hourly, then the new DataFrame will be index on an hour by hour
basis. The original data will be split by hour, so if we have 5-minutes observations,
we will end up with a list of data frames each containing 12 observations.

• Now we need to use each data frame in the group to compute some measure of
interest. If we want to obtain hourly returns, then we would need to sum up all
log-returns in an hour.

• The values we computed are then aggregated in a new data frame.
This functionality is available in the method resample:
# Method 1
da i ly_returns = re tu rn s . resample ( "D" ) . sum ( ) # D: ca l endar days
da i ly_returns = da i ly_returns . l o c [ np . unique ( r e tu rn s . index . date ) , : ]
p r i n t ( da i ly_returns )
# Method 2
da i ly_returns = re tu rn s . resample ( "B" ) . sum ( ) # B: bus ine s s days
da i ly_returns = da i ly_returns . l o c [ np . unique ( r e tu rn s . index . date ) , : ]
p r i n t ( da i ly_returns )
# Method 3
da i ly_returns = re tu rn s . resample ( "D" ) . apply (

lambda df : df . sum ( ) i f not df . empty e l s e None
)
da i ly_returns = da i ly_returns . dropna ( )
p r i n t ( da i ly_returns )
# Method 4
da i ly_returns = p r i c e s . resample ( "D" ) . apply (

lambda df : np . l og ( df . i l o c [ 0 , : ] / df . i l o c [ −1 , : ] ) i f not df . empty e l s e
None

)
da i ly_returns = da i ly_returns . dropna ( )
p r i n t ( da i ly_returns )
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See the Frequency (Offset Aliases) reference page for the possible frequencies that can be
used with the resample method. For a more in depth understanding of these topics you
should read the Time Series and Date functionality reference page.

10 MultiIndex
We have stored different variables in different data frames, but we can put all of the data
together (or most of it) in a single data frame. To do so, we need the data to have the
same indices, and to use a MultiIndex object to store the columns. Let’s load stock prices
and returns for two stocks:
de f load_stock ( f o l d e r , t i c k e r ) :

r e turn pd . read_csv (
os . path . j o i n ( f o l d e r , f " { t i c k e r } . csv " ) ,
header=None ,
names=[ " Date " , "Time " , " Pr i ce " ] ,
parse_dates =[ [0 , 1 ] ] , # combine columns 0 and 1 to parse
index_col =0, # use the f i r s t column as the index
date_parser=lambda x : pd . datet ime . s t rpt ime (x , "%Y%m%d %H%M" ) ,

)

f o l d e r = os . path . j o i n ( " / " , " Volumes " , "SD" , " Data " , " Stocks5Min " )
spy = load_stock ( f o l d e r , "SPY" )
csco = load_stock ( f o l d e r , "CSCO" )
p r i c e s = pd . merge ( l e f t=spy , r i g h t=csco , l e f t_ index=True , r ight_index=True ,

s u f f i x e s =("_SPY" , "_CSCO" ) )
r e tu rn s = p r i c e s . groupby ( p r i c e s . index . date ) . apply ( lambda df : np . l og ( df ) .

d i f f ( ax i s =0) )
r e tu rn s . columns = [ "Return_SPY" , "Return_CSCO" ]

Both data frames contain data about two stocks, SPY and CSCO, but one data
frame has information about prices and the other has information about returns. The
idea behind a MultiIndex is to split column labels in levels. In our case, the first level
would be the stock tickers, and the second level would be the information about each
stock (prices and returns). This allows us to put the entire data in a single data frame,
which can be useful for doing computations on a large set of data, for storing your data
set, or even for sharing results in a table format. To create a MultiIndex we need to
specify what are the labels on each level:
columns = pd . MultiIndex . from_product (

[ [ "SPY" , "CSCO" ] , [ " Pr i ce " ] ] , names=[ " Stock " , " In format ion " ]
)
p r i n t ( columns )

We can use this MultiIndex to substitute our column names:
p r i c e s . columns = columns
p r in t ( p r i c e s )

Our columns are now divided by stock, and for each stock we have a further division for
price. Notice that we gave names to our columns’ names: Stock refers to the different
tickers we have, and Information refers to the types of data we have (which is just one
for now).

Let’s create another MultiIndex for the returns:
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columns = pd . MultiIndex . from_product (
[ [ "SPY" , "CSCO" ] , [ " Return " ] ] , names=[ " Stock " , " In format ion " ]

)
p r i n t ( columns )
r e tu rn s . columns = columns
p r in t ( r e tu rn s )

We can now combine both data frames into one:
s t o ck s = pd . merge ( l e f t=pr i c e s , r i g h t=returns , l e f t_ index=True , r ight_index=

True )
p r i n t ( s t o ck s )

Let’s organize the data by the stock ticker:
s t o ck s = s tock s . sort_index ( ax i s =1, l e v e l=" Stock " )

The MultiIndex is a hierarchical structure, and the order it follows was the order
that was given when it was constructed. In this case, the labels first in the hierarchy are
the Stock names, SPY and CSCO, next are the Information names, Price and Return.

We can select columns of the data by using the slicing operator:
pr in t ( s t o ck s . l o c [ : , "SPY" ] )

The code above goes into the column of the stock SPY, and displays all the values for
this country. We go down 1-level in the hierarchy, and now there are only two divisions
for columns, the first is for Price and the second for Return.
pr in t ( s t o ck s . l o c [ : , ( "SPY" , " Pr i ce " ) ] )
p r i n t ( s t o ck s . l o c [ : , [ "SPY" , " Return " ] ] )
p r i n t ( s t o ck s . l o c [ : , ( "SPY" , ( " Pr i ce " , " Return " ) ) ] )

Notice the use of a tuple to specify a complete multi-level key, where each element of
the tuple specifies the keys for one level.

It is possible to select all values of a level in a MultiIndex by using the syntax
slice(None), similar to how : works with lists.
pr in t ( s t o ck s . l o c [ : , ( s l i c e (None ) , " Return " ) ] )

We can even add more stock data to our data frame:
aapl = load_stock ( f o l d e r , "AAPL" )
aapl [ " Return " ] = aapl . groupby ( aapl . index . date ) . apply ( lambda df : np . l og ( df ) .

d i f f ( ax i s =0) )
aapl . columns = pd . MultiIndex . from_product (

[ [ "AAPL" ] , [ " Pr i ce " , " Return " ] ] , names=[ " Stock " , " In format ion " ]
)
s t o ck s = pd . merge ( l e f t=stocks , r i g h t=aapl , l e f t_ index=True , r ight_index=

True )
p r i n t ( s t o ck s )

At this point we have a data structure that contains most of the information we need,
and which is a good starting point for computing other estimators.

As an example, let’s compute the realized variance for all stocks:
rv = (

s to ck s . l o c [ : , ( s l i c e (None ) , " Return " ) ]
. groupby ( s to ck s . index . date )
. apply ( lambda df : ( df ∗∗ 2) . sum( ax i s =0) )
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)

t i c k e r s = rv . columns . get_leve l_va lues ( l e v e l=" Stock " )
rv . columns = pd . MultiIndex . from_product (

[ t i c k e r s , [ " Rea l i z ed Variance " ] ] , names=[ " Stock " , " In format ion " ]
)
p r i n t ( rv )

You can repeat the process for the bipower variance, for example, and then aggregate the
resulting data frames into a single frame.
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