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The Effect of Microstructure Noise on the Realized
Variance

1 The Efficient Price

We use the Gordon growth model| to get an idea of the efficient or correct stock price
valuation. Let E denote expected earnings for next year, g the expected growth rate of
earnings, and p the appropriate discount rate relative to the risk of the stock. Then we
have the valuation expression for the correct price P as
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After using the formula for the geometric sum. Evidently p > ¢ as to be expected for the
stock to be worth a finite amount of money. As time t passes over seconds or minutes,
the values of E, p, g get revised continuously, so we put the ¢ subscript on the variables,
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No financial market could be designed to keep the traded price exactly equal to P; con-
tinuously. We introduce a small multiplicative observation error,

pPvserved — (Measurement Error;) x P,
Then, to be consistent with previous lectures, we take X; = log(P;), so that

log(PObserVEd) X; + Noisey,

which makes the noise additive in logs and the analysis tractable.

2 Sampling and Observation
We consider the efficient X evolving in continuous time as

dX, = \/edW, + dJ,.

LAl modern asset valuation models are variants of the Gordon model.
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For a while we restrict ¢ € [0, 1] but everything below holds day-by-day if ¢ € [0,T]. As
before,

AZLX e XiAn - X(i,]_)An
We allow for the possibility of measurement error (noise) by way of

V" = Xia, +Xi

7

where y; reflects the noise, taken to have mean zero, variance ai, and to be serially
uncorrelated. If 02 = 0 then we are back in the case studied before, while if 02 > 0 we
are in the noisy case. Keep in mind that the A}' notation automatically adjusts the gap
between observations on X when n varies.

Now we consider sums of squares of the noisy data:

n
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Write this out as
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where the cross product terms are like A?X X y;, ..., with completely random signs (*)
and magnitudes, so the cross product terms will largely cancel out in the sum. The text
Ait-Sahalia and Jacod, 2014, p. 216 states the same thing with slightly more complicated
notation. The first term in the above acts like

n

1
S(AIX)P ~ IV = / csds,

i=1 0

regardless of n so long as n is reasonably large; remember that for sums of squared
differences of X, it does not matter much if we use 10-second, 5-minute, 6-minute, or
10-minute sampling, we should get approximately the same number. On other hand by
the law of large numbers,

1 n n
;ZX? X200 = Y XP 4 X A 2no;
i=1 =1

where on the right-hand side the contribution of the noise grows directly with n. Con-
sidering consecutively using 10-minute (n = 38), 5-minute (n = 77), l-minute (n = 385),
1-second (n = 23,100), so

SV - YR & IV + 38(207)
=1
~ IV +717(202)
~ IV + 385(202)
~ 1V +23100(207)
~ IV 4 n(207)
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The noise term explodes with n; this explosion actually happens in the data. The figure
in the text Ait-Sahalia and Jacod, 2014, p. 217 reveals this sort of behavior of the sum of
squared observed returns. This explosion with n is the basic reason we do not regularly
drill down to the very finest time interval recorded by the exchange.

3 Volatility Signature Plot

A key to understanding the effects of the noise is the volatility signature plot, which is
a graphical representation of certain anomalies related to price variation at very high
frequencies. Under the model conditions, so long as n is large enough that we think the
asymptotic approximations are accurate, then the realized variance should be independent
of the sampling frequency. That is

R‘/})-min ~ R‘/E’)-min ~ R‘/l-min ~ R‘/S()-second ~ R‘/lo-second ~ R‘/l-second

The reason is that each RV estimates the same thing, IV, and so each RV should be
about the same.
Another way to view things is to remember that

1
]V:/ csds,
0

and no matter how we slice and dice IV the sum of the pieces will add back up to IV.
Consider n > 1, A,, and the intervals I = [0,A, = 1/n], I = (A,,24A,], ..., I, =
((n — 1)A,, 1], then always, i.e., for all n > 1:

IV = | cods+ csds+--~+/ cs ds.
In

I Iz

By definition the realized variance is

RV = (ATX)* 4+ (ATX)? +--- 4 (A" X)?

3

=D _(A7X)*

=1

We showed (sketched the proof) early in the course that sum above approximates IV for
large n.

What happens, however, if you drill down to ultra-high frequency data? Using data
based on 5-second sampling we can compute the volatility signature plot for 5-sec, 10-sec,
15-sec, etc. In project 2 you did just that. At sampling frequencies higher than 1-minute,
the effects of the noise are quite evident. Raw data sampled more frequently without noise
corrections are unusable for regular economic purposes. However, ultra-high frequency
data are of intense interest to economists who study the economics of the trading frictions
that lead to the noise; study of these trading frictions are not a topic for this course but
are important in other contexts.
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