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Jump Returns and the Truncated Variance

1 Setup and Review
We assume that log-prices evolve according to a jump-diffusion process:

dXt = √ctdWt + dJt

where ct is the variance process and Jt is a jump process (of finite activity). Notice that
the process above does not have a drift term. This is because the drift is negligible at
small time periods.

The process is sampled at equi-distant intervals:

Xi∆n for i = 0, 1, 2, . . . , nT

where T is the number of days for which the process is observed, and n counts the number
of observations within a day.

Remember that the process X has two parts: one that is continuous (diffusion), and
one that is discontinuous (jump). Indeed:

X
′

t ≡
∑

0≤s≤t
∆Xt

Xt = (Xt −X
′

t)︸ ︷︷ ︸
continuous

+ X
′

t︸︷︷︸
jumps

= Xc
t +Xd

t

Let’s assume T = 1. Then the daily integrated variance is given by:

IV =
∫ 1

0
csds

Given the geometric returns ri = ∆n
iX for i = 1, 2, . . . , n, we studied two estimators

for the integrated variance. The realized volatility (RV ) and the bipower variance (BV ):

RV ≡
n∑
i=1

r2
i

BV ≡ π

2

n∑
i=2
|riri−1|

RV and BV are estimators for IV , but RV is affected by the presence of jumps, while
BV is jump robust. Next, we will discuss the theory for separating moves in the price
(returns) that come from the continuous part of the process (Xc) and moves that come
from the discontinuous part of the process (Xd).
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2 Separating Diffusive Returns from Jump Returns
Let’s denote the return at the i-th interval of day t by rt,i:

rt,i ≡ X(i+(t−1)n)∆n −X(i−1+(t−1)n)∆n

= ∆n
i+(t−1)nX

for t = 1, 2, . . . , T and i = 1, 2, . . . , n. To simplify the notation, let ti ≡ (i+ (t− 1)n)∆n.
Then, the return on any interval is given by

rt,i = Xti −Xti−1

= Xti −Xti−∆n

The idea is to classify each of the moves (returns) as continuous (diffusive) or discon-
tinuous (jump):

rt,i = rct,i + rdt,i

Using the jump-diffusion process, we can write:

Xti = Xti−∆n +
∫ ti

ti−∆n

√
csdWs +

∑
ti−∆n<s≤ti

∆Js

If there were no jumps:

rt,i = Xti −Xti−∆n

=
∫ ti

ti−∆n

√
csdWs

≈
√∫ ti

ti−∆n

csds︸ ︷︷ ︸
≡ σt,i

Zt,i

d∼ N
(
0, σ2

t,i

)
If we could observe (we do not) the path of the variance process ct on the interval
[ti −∆n, ti], then we could compute σt,i. Now, the return over such a short time interval
is approximately normal:

rt,i ≈ σt,iZt,i

The probability that rt,i is between 3 standard deviations of the mean is about 99.73%.
The probability that rt,i is between 4 standard deviations of the mean is about 99.99%.
That is, if there are no jumps in the time interval [ti−∆n, ti], then we expect most of the
returns to fall within 4 standard deviations of the mean. However, we know jumps can
occur at any time interval. If a jump occurs, then the magnitude of rt,i will be dominated
by the jump and will far exceed 4 standard deviations of the mean.

This analysis motivates the following rule:

|rt,i| ≤ αnσt,i : return is diffusive
|rt,i| > αnσt,i : return is jump
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Where αn is some threshold that decreases as ∆n → 0. The use of a threshold to separate
continuous returns from jump returns is due to Cecilia Mancini (2001) and C. Mancini
(2009), and was refined in Jacod and Protter (2012). The formal proof that the threshold
correctly classifies diffusive moves from jump moves was developed in Li, Todorov, and
Tauchen (2017).

The current practice is the following:

rct,i = rt,i1{|rt,i|≤α∆0.49
n

√
τiBV t}

rdt,i = rt,i1{|rt,i|>α∆0.49
n

√
τiBV t}

where α ∈ [3.5, 4.5].
Let’s understand the substitution of σt,i by the term ∆0.49

n

√
τiBV t. First, we do not

observe the path of ct, so we cannot directly compute σt,i. However, we can estimate the
total variation of a day (IV t) using the bipower variance estimator (BV t). But using
the total variation leads to a problem: on a small interval the variation is not given by
IV t but only a fraction of it. This can be fixed by appropriately redistributing the total
variation. Thus, instead of writing rt,i ≈ σt,iZt,i we have:

rt,i ≈
√

∆nIV tZt,i

= ∆0.50
n

√
IV tZt,i

When redistributing the total variance there is another problem that needs to be ad-
dressed: the variance process exhibits an intraday pattern. This intraday pattern refers
to the fact that in the mornings the variance is higher than during lunch time, and after
lunch time the variance increases again. To adjust for this effect, we scale IV t depending
on the time of the day, leading to:

rt,i ≈ ∆0.50
n

√
τiIV tZt,i

We call τi the diurnal pattern or the time-of-day factor.
The time-of-day factor is used to account for the intraday pattern of the volatility.

To compute τi we first estimate the average (across days) bipower factors at each time
interval:

bi ≡
1
T

T∑
t=1
|rt,irt,i−1| for i = 2, 3, . . . , n

b1 ≡ b2

Then, the time-of-day factor is defined as:

τi ≡
bi

1
n

∑n
j=1 bj

That is, the time-of-day factor is just a re-scaled version of bi so that the mean of τi over
a day is 1.

Now, the local return (rt,i) is approximately normally distributed:

rt,i
d∼ N (0,∆nτiIV t)
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To correctly separate the diffusive from the jump returns, we need a threshold that is
slightly bigger than ∆0.50

n

√
τiIV t. Alternatively, we need a threshold that decreases slower

than ∆0.50
n

√
τiIV t when ∆n → 0 to allow all diffusive moves to get through the threshold

and exclude the jump moves. To achieve that we inflate the cutoff by:

∆−0.01
n =

( 1
n

)−0.01

= n0.01

> 1

In summary, we separate returns using the cuttoff:

cutofft,i ≡ αn∆0.49
n

√
τiBV t

The exponent for ∆n does not necessarily have to be 0.49, but can actually be any number
close to 0.50. The literature often writes this threshold as:

cutofft,i ≡ αn∆$
n

√
τiBV t for 0 < a < $ < 0.50

where a is a lower bound determined by some other conditions (unimportant here).

3 Truncated Variance
Now that we can separate returns coming from the diffusive part of the model from the
returns coming from the jump part, we can study a new estimator for the integrated
variance.

The truncated variance is an estimator for the integrated variance that is robust to
jumps. It is defined as:

TV t ≡
n∑
i=1

(∆n
i+(t−1)nX)21{∣∣∣∆n

i+(t−1)n
X

∣∣∣≤cutofft,i

}
=

n∑
i=1

(rct,i)2

This estimator throws away moves with big jumps, retaining only the moves that are
diffusive to estimate the variance.

Under regularity conditions, it is possible to show that:

∆−1/2
n (TV t − IV t) d→ N

(
0, 2

∫ t

t−1
c2
sds

)
Next, let’s compare the truncated variance to the previous estimators.

4 Comparison of IV Estimators
The table below compares the asymptotic distribution of the IV estimators studied up
to now:
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Estimator Definition Rate of Convergence Asymptotic Distribution Robust to Jumps
RV t

∑n
i=1 r

2
t,i ∆−0.50

n N
(
IV t, 2

∫ 1
0 c

2
sds

)
No (bias: ∑s ∆J2

s )
BV t

π
2
∑n
i=2 |rt,irt,i−1| ∆−0.50

n N
(
IV t, 2.61

∫ 1
0 c

2
sds

)
Yes

TV t
∑n
i=1(rct,i)2 ∆−0.50

n N
(
IV t, 2

∫ 1
0 c

2
sds

)
Yes

Notice that RV is the only estimator that is affected by jumps. Under the presence of
jumps RV estimates the integrated variance, but also adds in the squared jump returns.
However, if there are no jumps, then the asymptotic variance of RV is smaller than that
of BV . The TV estimator converges to the integrated variance whether there are jumps
or not. Its asymptotic variance is smaller than that of BV , making it a more efficient
jump robust estimator for the integrated variance.
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