
Realized Beta

Guilherme Salomé

September 19, 2018

1 Basic Setting
Consider two random variables X1 and X2 with zero mean. The theoretical linear regres-
sion of X2 on X1 is:

X2 = βX1 + ε

where:

β = Cov (X1, X2)
Var [X1]

Given observations of the random variables:

{X1,i, X2,i}n
i=1

we can estimate β with the estimator:

β̂ =
∑n

i=1 X1,iX2,i∑n
i=1 X

2
1,i

Under some regularity conditions we know that β̂ is a consistent estimator of β with a
well defined asymptotic distribution.

The theoretical regression is a statistical construction that essentially always exists so
long as the moments exist, but it does not always make economic sense. If we just grab any
two variables, then we likely get a nonsense regression of no economic interest. If we use
economics to select the variables, then the regression can be a reasonable interpretation.
In our case, X2 is the return on a particular asset or portfolio and X1 is the return on
the market, and β can be interpreted as the beta of the Capital Asset Pricing Model.

Next we will see how to use this same idea in the high-frequency setting.

2 High-Frequency Setting
Consider two processes X1 and X2. For example, X1 is the log-price of a market index
(like the S&P500 index) and X2 is the log-price of some portfolio or stock. Define the
vector:

X ≡
(
X1
X2

)
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Just as in the previous lectures, we assume that Xt follows a semimartingale (the usual
model for financial prices). The difference is that X is a 2 dimensional process. The
dynamics of X are given by:

dXt = √ctdWt + dJt for 0 ≤ t ≤ T

where Wt is a 2-dimensional Wiener process and Jt is a compound Poisson process.
The variance process ct is now a matrix:

ct =
[
c11,t c12,t

c21,t c22,t

]

The variance matrix is symmetric and we denote the symmetric square root of ct by
√
ct.

The matrix ct is referred to as the local variance matrix.
We can decompose the process X into continuous and discontinuous parts:

Xt = Xc
t +Xd

t

Define the continuous returns as:

rc
1,t,i ≡ ∆n

i+(t−1)nX
c
1

rc
2,t,i ≡ ∆n

i+(t−1)nX
c
2

From our earlier work, we know how to use the continuous returns to estimate the
integrated variance of the processes:

TV1,t ≡
n∑

i=1
(rc

1,t,i)2 →
∫ t

t−1
c11,sds

TV2,t ≡
n∑

i=1
(rc

2,t,i)2 →
∫ t

t−1
c22,sds

The continuous returns can also be used to estimate the integrated covariance:

R̂Covt ≡
n∑

i=1
rc

1,t,ir
c
2,t,i →

∫ t

t−1
c12,sds =: RCovt

The regression β in the first part was given by the covariance between the two processes
divided by the variance of the first. This motivates the definition of an analogous β in
the high-frequency setting: the realized beta.

Rβt ≡
∫ t

t−1 c12,sds∫ t
t−1 c11,sds

The definition also suggests the estimator for Rβ:

R̂βt ≡
R̂Covt

TV 1,t

=
∑n

i=1 r
c
1,t,ir

c
2,t,i∑n

i=1(rc
1,t,i)2 → Rβt
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3 Inference for the Realized Beta
To construct confidence intervals for the realized beta one can study the asymptotic
distribution of the realized beta estimator. Results on that front can be found in Ait-
Sahalia and Jacod (2014). However, we will rely on a bootstrap approximation to conduct
inference for Rβ.

The bootstrap scheme is analogous to the bootstrap for the truncated variance. First,
for each day divide the observations into M intervals of length kn (this implies that
M = b n

kn
c). Second, for each interval j (for j = 1, 2, . . . ,M), draw kn independent

continuous returns (r̃c
1, r̃

c
2) by sampling randomly with replacement from the continuous

returns in the j-th interval. Third, use the new sample to compute the realized beta
estimator:

R̃βt =
∑n

i=1 r̃
c
1,t,ir̃

c
2,t,i∑n

i=1 r̃
2
1,t,i

Fourth, repeat the three steps above to obtain several different estimates of the realized
beta. Denote those estimates for day t by:{

R̃βt,1, R̃βt,2, . . . , R̃βt,10000

}
Compute the 2.5% and 97.5% quantiles of the set above to form a 95% confidence interval
for the realized beta for day t. Repeat the above for of the days t = 1, 2, . . . , T .

When implementing the bootstrap and debugging your code, set the bootstrap rep-
etitions to 100 per day. Then debug the code and only when you are sure it is working
increase the number of bootstrap repetitions to a high number (like 10000).
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