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1 The Efficient Price
We use the Gordon growth model1 to get an idea of the efficient or correct stock price
valuation. Let E denote expected earnings for next year, g the expected growth rate of
earnings, and ρ the appropriate discount rate relative to the risk of the stock. Then we
have the valuation expression for the correct price P as

P =
∞∑
j=0

(1 + g)jE
(1 + ρ)j+1 .

or

P = E

ρ− g
.

After using the formula for the geometric sum. Evidently ρ > g as to be expected for the
stock to be worth a finite amount of money. As time t passes over seconds or minutes,
the values of E, ρ, g get revised continuously, so we put the t subscript on the variables,

Pt = Et
ρt − gt

.

No financial market could be designed to keep the traded price exactly equal to Pt con-
tinuously. We introduce a small multiplicative observation error,

PObserved
t = (Measurement Errort)× Pt

Then, to be consistent with previous lectures, we take Xt = 100 log(Pt), so that

100 log(PObserved
t ) = Xt + Noiset,

which makes the noise additive in logs and the analysis tractable.

2 Sampling and Observation
We consider the efficient X evolving in continuous time as

dXt = √ctdWt + dJt.

1All modern asset valuation models are variants of the Gordon model.
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For a while we restrict t ∈ [0, 1] but everything below holds day-by-day if t ∈ [0, T ]. As
before,

∆n
iX = Xi∆n −X(i−1)∆n

We allow for the possibility of measurement error (noise) by way of

Y n
i = Xi∆n + χi

where χi reflects the noise, taken to have mean zero, variance σ2
χ, and to be serially

uncorrelated. If σ2
χ = 0 then we are back in the case studied before, while if σ2

χ > 0 we
are in the noisy case. Keep in mind that the ∆n

i notation automatically adjusts the gap
between observations on X when n varies.

Now we consider sums of squares of the noisy data:
n∑
i=1

(Y n
i − Y n

i−1)2.

Write this out as
n∑
i=1

(Y n
i − Y n

i−1)2 =
n∑
i=1

(∆n
iX)2 + χ2

i + χ2
i−1 + cross products

≈
n∑
i=1

(∆n
iX)2 + χ2

i + χ2
i−1

where the cross product terms are like ∆n
iX × χi, . . ., with completely random signs (±)

and magnitudes, so the cross product terms will largely cancel out in the sum. The text
Ait-Sahalia and Jacod, 2014, p. 216 states the same thing with slightly more complicated
notation. The first term in the above acts like

n∑
i=1

(∆n
iX)2 ≈ IV =

∫ 1

0
csds,

regardless of n so long as n is reasonably large; remember that for sums of squared
differences of X, it does not matter much if we use $10$-second, $5$-minute, $6$-minute,
or $10$-minute sampling, we should get approximately the same number. On other hand
by the law of large numbers,

1
n

n∑
i=1

χ2
i + χ2

i−1 ≈ 2σ2
χ ⇒

n∑
i=1

χ2
i + χ2

i−1 ≈ 2nσ2
χ

where on the right-hand side the contribution of the noise grows directly with n. Con-
sidering consecutively using 10-minute (n = 38), 5-minute (n = 77), 1-minute (n = 385),
1-second (n = 23, 100), so

n∑
i=1

(Y n
i − Y n

i−1)2 ≈ IV + 38(2σ2
χ)

≈ IV + 77(2σ2
χ)

≈ IV + 385(2σ2
χ)

≈ IV + 23100(2σ2
χ)

≈ IV + n(2σ2
χ)
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The noise term explodes with n; this explosion actually happens in the data. The figure
in the text Ait-Sahalia and Jacod, 2014, p. 217 reveals this sort of behavior of the sum of
squared observed returns. This explosion with n is the basic reason we do not regularly
drill down to the very finest time interval recorded by the exchange.

3 Volatility Signature Plot
A key to understanding the effects of the noise is the volatility signature plot, which is
a graphical representation of certain anomalies related to price variation at very high
frequencies. Under the model conditions, so long as n is large enough that we think the
asymptotic approximations are accurate, then the realized variance should be independent
of the sampling frequency. That is

RV5-min ≈ RV3-min ≈ RV1-min ≈ RV30-second ≈ RV10-second ≈ RV1-second

The reason is that each RV estimates the same thing, IV , and so each RV should be
about the same.

Another way to view things is to remember that

IV =
∫ 1

0
cs ds,

and no matter how we slice and dice IV the sum of the pieces will add back up to IV .
Consider n ≥ 1, ∆n, and the intervals I1 = [0,∆n = 1/n], I2 = (∆n, 2∆n], . . . , In =
((n− 1)∆n, 1], then always, i.e., for all n ≥ 1:

IV =
∫
I1
cs ds+

∫
I2
cs ds+ · · ·+

∫
In

cs ds.

By definition the realized variance is

RV = (∆n
1X)2 + (∆n

2X)2 + · · ·+ (∆n
nX)2

=
n∑
i=1

(∆n
iX)2

We showed (sketched the proof) early in the course that sum above approximates IV for
large n.

What happens, however, if you drill down to ultra-high frequency data? Using data
based on 5-second sampling we can compute the volatility signature plot for 5-sec, 10-sec,
15-sec, etc. In project 2 you did just that. At sampling frequencies higher than 1-minute,
the effects of the noise are quite evident. Raw data sampled more frequently without noise
corrections are unusable for regular economic purposes. However, ultra-high frequency
data are of intense interest to economists who study the economics of the trading frictions
that lead to the noise; study of these trading frictions are not a topic for this course but
are important in other contexts.
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