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We have discussed several ways of using high-frequency observations of stock prices to
estimate the integrated variance of a stock. One of the estimators for integrated variance
is the realized variance. The realized variance converges to the integrated variance as
the sampling frequency increases, and its asymptotic variance is small when compared
to other estimators, like the bipower variance. For this reason, the realized variance of
a stock is often taken as a good measure of its integrated variance. We now turn to
forecasting a stock’s variance. We will do so by using the realized variance as a proxy for
the integrated variance, and develop models for forecasting RV.

1 AR Models
Let’s consider autoregressive (AR) models to forecast the realized variance. The simplest
is the AR(1) model:

RVt = β0 + β1RVt−1 + ut

We estimate the β parameters using data for a period t = S, S + 1, ..., T by simple OLS
regression to get β̂0 and β̂1. The in-sample fitted values are

R̂V t = β̂0 + β̂1RVt−1.

If we want to do out of sample forecasting, the one-step-ahead forecast is
R̂V T +1 = β̂0 + β̂1RVT

For a multistep ahead implied forecast apply the chain rule of forecasting
R̂V T +j+1 = β̂0 + β̂1R̂V T +j, j = 1, 2, . . .

Evidently, an AR(2) model is
RVt = β0 + β1RVt−1 + β2RVt−2 + ut

The same logic for estimation and forecasting applies to the AR(2) model.
We know that volatility exhibits a high degree of persistence and it’s likely that RVt

is better forecast by using more lags, RVt−1, RVt−3, . . .. That makes us think of the model
with J lags:

RVt = β0 + β1RVt−1 + β2RVt−2 + · · ·+ βJRVt−J + ut

where ut is the error term. But to capture long-range dependence might entail J = 10,
J = 20, or higher. Estimating such a large number of coefficients could entail a lot of
estimation error and lead to bad forecasting properties.
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2 HAR Models
In Corsi (2009), Professor Corsi argues that for forecasting purposes all that might matter
is the average level of volatility over the previous week and month. So we define the
variables

RV w
t−1 = 1

5

5∑
j=1

RVt−j

and

RV m
t−1 = 1

22

22∑
j=1

RVt−j

Recall that there are usually 22 business days in a month, which is why we average over
the previous 22 instead of 30. Using these variables we write a restricted version of the
AR(J) model as:

RVt = β0 + β1RVt−1 + βwRV
w

t−1 + βmRV
m

t−1 + ut

which is called the HAR model. Note that the HAR model above has as many as J = 22
lags as in AR(J) model, but by restricting the form of the dependence there are only
three coefficients to estimate, a great simplification for forecasting purposes.

3 Examples
Using 5-min and 2013−2016 data for the stock Bank of America (BAC) an OLS regression
gives the estimated AR(1):

β0 β1
coefficient: 0.9196 0.4780

standard deviation: (0.0711) (0.0278)
R2: 0.23

The estimated HAR model is:
β0 β1 βw βm

coefficient: 0.3499 0.2978 0.2186 0.2840
standard deviation: (0.1016) (0.0367) (0.0647) (0.0724)

R2: 0.28

4 No-Change (White Noise) Model
Rather than estimating parameters, another often-used forecasting rule is just to use the
preceding period’s value as in

R̂V t+1 = RVt.

Evidently, the no change forecast results from an AR(1) constrained as β0 = 0 and β1 = 1.
The implicit model is

RVt = RVt−1 + ut

This model is often called the random walk model.
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5 Forecast Evaluation
Suppose we have data (RVt)T

t=0 and we want to forecast RVT +1. We now have three
possibilities:

No Change : R̂V T +1 = RVT

AR(1) : R̂V T +1 = β̂0 + β̂1RVT

HAR : R̂V T +1 = β̂0 + β̂1RVT + β̂wRV
w

T + β̂mRV
m

T

How do we evaluate these three competing models under consideration. The standard
strategy is rolling regressions and quasi-out-of-sample forecasting.

We will let [S, T ] denote the endpoints of our subsample of data, e.g., [S, T ] is a
window of a fixed width. (Think of 1, 000 observations or four years.) We start with the
window [S1, T1], and using all of the data for t = S1, S1 + 1, . . . , T1 (including the high
frequency within day to form RV ) we estimate by OLS the parameters of the models
above. We then form the forecast errors:

No Change : eNC
1 = RVT1+1 −RVT1

AR(1) : eAR1
1 = RV T1+1 − β̂0 − β̂1RVT1

HAR : eHAR
1 = RV T1+1 − β̂0 − β̂1RVT − β̂wRV

w
T − β̂mRV

m
T

We then advance each endpoint by one day: S1 → S2 = S1 + 1, T1 → T2 = T1 + 1,
and repeat the above. In general, we keep increasing S and T by one unit and form the
error at each step j:

No Change : eNC
j = RVTj+1 −RVTj

AR(1) : eAR1
j = RV Tj+1 − β̂0j − β̂1jRVTj

HAR : eHAR
j = RV Tj+1 − β̂0j − β̂1jRVTj

− β̂wjRV
w

Tj
− β̂mjRV

m
Tj

The conventional metric for evaluating forecasts is the mean squared error (MS):

No Change : MSENC = 1
J

J∑
j=1

(eNC
j )2

AR(1) : MSEAR1 = 1
J

J∑
j=1

(eAR1
j )2

HAR : MSEHAR = 1
J

J∑
j=1

(eHAR
j )2

6 RQ Models
Recall the AR1 model:

RVt = β0 + β1RVt−1 + ut

Bollerslev, Patton, and Quaedvlieg (2016) note that the above model is somewhat im-
plausible because β1 varies with the measurement error in RVt−1. We should really write

RVt = β0 + β1,t−1RVt−1 + ut
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The coefficient β1,t−1 is small when the measurement error is large and vice versa. How-
ever, from the high frequency theory we know something about the magnitude of the
measurement error. Specifically,

σ̂et−1 = constant× Q̂IV
1/2
t−1,

and β1,t−1 should be small when σ̂et−1 is large. So Bollerslev, Patton, and Quaedvlieg
(2016) propose

β1,t−1 = β1 + β1QQ̂IV
1/2
t−1

with the expectation that β1Q < 0. The linear functional form is used just to keep things
simple, which is generally important for forecasting. Putting the last two equations
together gives

RVt = β0 + β1RVt−1 + β1QQ̂IV
1/2
t−1RVt−1 + ut

The preceding is just an AR1 model with a second term to adjust for the measurement
error in RVt−1.

Evidently, the HAR model can be adjusted via the QIV t−1 adjustment. As suggested
by Bollerslev, Patton, and Quaedvlieg (2016) we consider the model

RVt = β0 + β1RVt−1 + β1QQ̂IV
1/2
t−1RVt−1 + βwRV

w
t−1 + βmRV

m
t−1 + ut

There are even more variations one can consider, but if we stop here we now have four
forecasting models:

AR1 : R̂V T +1 = β̂0 + β̂1RVT

ARQ1 : R̂V T +1 = β̂0 + β̂1RVT + β̂1QQ̂IV
1/2
T RVT

HAR : R̂V T +1 = β̂0 + β̂1RVT + β̂wRV
w

T + β̂mRV
m

T

HARQ1 : R̂V T +1 = β̂0 + β̂1RVT + β̂1QQ̂IV
1/2
T RVT + β̂wRV

w
T + β̂mRV

m
T

These are the four models you evaluate as forecasting models for RV for the next project.
A caveat of the RQ correction is that the model might generate occasional "insane"

forecasts due to extreme outliers in Q̂IV . Thus we need to add a "sanity" filter. If
R̂V > maxRV or R̂V < minRV , where maxRV , minRV are the max and min of RVt

over the sample window, then just set R̂V = meanRV where meanRV is the average
RV over the sample window.
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